0

0

如何使用Python对图片进行风格迁移

王林

王林

发布时间:2023-08-26 14:27:27

|

2002人浏览过

|

来源于php中文网

原创

如何使用python对图片进行风格迁移

如何使用Python对图片进行风格迁移

引言:
风格迁移是计算机视觉领域一项有趣而有挑战性的任务,它可以将一张图片的内容与另一张图片的风格进行合成,创造出独特的艺术效果,被广泛应用于图像处理、设计以及娱乐等领域。本文将介绍如何使用Python编程语言,结合深度学习算法,实现对图片的风格迁移。

步骤一:导入所需库
首先,我们需要导入一些必要的Python库,包括TensorFlow、Keras、NumPy和Matplotlib。执行以下代码:

import tensorflow as tf
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt

步骤二:加载预训练模型
在风格迁移中,我们可以使用预训练的卷积神经网络模型,如VGG19。这个模型在图像识别任务上具有很好的表现,并且在风格迁移任务中也被广泛使用。执行以下代码:

立即学习Python免费学习笔记(深入)”;

vgg = tf.keras.applications.VGG19(include_top=False, weights='imagenet')
vgg.trainable = False

步骤三:定义内容损失
内容损失用于衡量两张图片在内容上的差异。我们可以使用VGG模型的中间层来提取图片的内容特征。具体地,我们可以选择VGG模型的某些卷积层作为内容层,并比较输入图像和目标图像在这些层上的特征表示。执行以下代码:

content_layers = ['block5_conv2']
content_extractor = keras.Model(inputs=vgg.input, outputs=[vgg.get_layer(name).output for name in content_layers])

步骤四:定义风格损失
风格损失用于衡量两张图片在风格上的差异。我们可以使用Gram矩阵来表示一张图片中不同通道之间的相关性,进而度量图片在纹理、颜色等方面的特征。执行以下代码:

情感家园企业站5.0 多语言多风格版
情感家园企业站5.0 多语言多风格版

一套面向小企业用户的企业网站程序!功能简单,操作简单。实现了小企业网站的很多实用的功能,如文章新闻模块、图片展示、产品列表以及小型的下载功能,还同时增加了邮件订阅等相应模块。公告,友情链接等这些通用功能本程序也同样都集成了!同时本程序引入了模块功能,只要在系统默认模板上创建模块,可以在任何一个语言环境(或任意风格)的适当位置进行使用!

下载
style_layers = ['block1_conv1', 'block2_conv1', 'block3_conv1', 'block4_conv1', 'block5_conv1']
style_extractor = keras.Model(inputs=vgg.input, outputs=[vgg.get_layer(name).output for name in style_layers])

def gram_matrix(input_tensor):
    channels = int(input_tensor.shape[-1])
    a = tf.reshape(input_tensor, [-1, channels])
    n = tf.shape(a)[0]
    gram = tf.matmul(a, a, transpose_a=True)
    return gram / tf.cast(n, tf.float32)

步骤五:定义总变差损失
总变差损失用于促使合成图像保持平滑。通过对合成图像的每个像素与其相邻像素的差值进行求和,我们可以减少噪点和不连续的边缘。执行以下代码:

def total_variation_loss(image):
    x = tf.image.image_gradients(image)
    return tf.reduce_sum(tf.abs(x[0])) + tf.reduce_sum(tf.abs(x[1]))

步骤六:定义目标函数
我们将内容损失、风格损失和总变差损失结合起来,形成一个综合的目标函数。目标函数将用于最小化图片的内容与风格之间的差异,并生成满足约束条件的合成图像。执行以下代码:

def compute_loss(image, content_features, style_features):
    content_output = content_extractor(image)
    style_output = style_extractor(image)
    content_loss = tf.reduce_mean(tf.square(content_output - content_features))
    style_loss = tf.add_n([tf.reduce_mean(tf.square(style_output[i] - style_features[i])) for i in range(len(style_output))])
    content_loss *= content_weight
    style_loss *= style_weight
    tv_loss = total_variation_loss(image) * total_variation_weight
    loss = content_loss + style_loss + tv_loss
    return loss

@tf.function()
def train_step(image, content_features, style_features, optimizer):
    with tf.GradientTape() as tape:
        loss = compute_loss(image, content_features, style_features)
    gradients = tape.gradient(loss, image)
    optimizer.apply_gradients([(gradients, image)])
    image.assign(tf.clip_by_value(image, 0.0, 1.0))

步骤七:进行风格迁移
在完成模型的定义后,我们可以使用自定义的训练函数,迭代地优化合成图像,使其在内容和风格上与目标图像尽可能地相似。执行以下代码:

def style_transfer(content_path, style_path, num_iteration=1000, content_weight=1e3, style_weight=1e-2, total_variation_weight=30):
    content_image = load_image(content_path)
    style_image = load_image(style_path)
    content_features = content_extractor(content_image)
    style_features = style_extractor(style_image)
    opt = keras.optimizers.Adam(learning_rate=0.02, beta_1=0.99, epsilon=1e-1)
    image = tf.Variable(content_image)
    start_time = time.time()
    for i in range(num_iteration):
        train_step(image, content_features, style_features, opt)
        if i % 100 == 0:
            elapsed_time = time.time() - start_time
            print('Iteration: %d, Time: %.2fs' % (i, elapsed_time))
            plt.imshow(image.read_value()[0])
            plt.axis('off')
            plt.show()
    image = image.read_value()[0]
    return image

步骤八:执行风格迁移
最后,我们选择一张内容图片和一张风格图片,然后调用style_transfer()函数进行风格迁移。执行以下代码:

content_path = 'content.jpg'
style_path = 'style.jpg'
output_image = style_transfer(content_path, style_path)
plt.imshow(output_image)
plt.axis('off')
plt.show()

结论:
本文介绍了如何使用Python编程语言,结合深度学习算法,实现对图片的风格迁移。通过加载预训练模型,定义内容损失、风格损失和总变差损失,并结合自定义训练函数,我们可以将一张内容图片与一张风格图片合成一幅融合它们特点的新图片。通过不断迭代优化,我们可以得到满足给定约束条件的最终合成图像。希望读者能够通过本文的介绍,了解到风格迁移的基本原理和实现方法,并进一步探索和应用该技术在图像处理和艺术创作等领域的潜力。

相关文章

python速学教程(入门到精通)
python速学教程(入门到精通)

python怎么学习?python怎么入门?python在哪学?python怎么学才快?不用担心,这里为大家提供了python速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!

下载

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

715

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

625

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

739

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1235

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

575

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

698

2023.08.11

桌面文件位置介绍
桌面文件位置介绍

本专题整合了桌面文件相关教程,阅读专题下面的文章了解更多内容。

0

2025.12.30

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
R 教程
R 教程

共45课时 | 4.3万人学习

Bootstrap 5教程
Bootstrap 5教程

共46课时 | 2.7万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号