0

0

C++程序用于计算给定数字的对数伽玛

WBOY

WBOY

发布时间:2023-08-25 15:13:06

|

2619人浏览过

|

来源于tutorialspoint

转载

c++程序用于计算给定数字的对数伽玛

伽马函数被描述为每个给定数字的阶乘的扩展 数学。另一方面,阶乘只能为实数定义,因此 gamma 函数超出了计算除 负整数。它由 -

表示

$$\mathrm{\Gamma \left ( x \right )=\left ( x-1 \right )!}$$

伽玛函数对于更高的值会快速增长;因此,对数应用对数 伽玛会大大减慢它的速度。特定数字的自然对数 gamma 为 它的另一个名字。

在本文中,我们将了解如何计算给定的伽玛函数的对数 在C++中输入数字x。

使用 lgamma() 函数对数 Gamma

C++ cmath 库有一个 lgamma() 函数,它接受参数 x,然后执行 gamma(x) 并对该值应用自然对数。使用 lgamma() 的语法是 如下所示 -

语法

#include < cmath >
lgamma(  )

算法

  • 读取数字 x
  • res := 使用 lgamma( x ) 的对数 gamma
  • 返回结果

示例

#include 
#include 
using namespace std;
float solve( float x ){
   float answer;
   answer = lgamma( x );
   return answer;
}
int main(){
   cout << "Logarithm Gamma for x = 10 is: " << solve( 10 ) << endl;
   cout << "Logarithm Gamma for 15! which is x = 16 is: " << solve( 16 ) << endl;
   cout << "Logarithm Gamma for x = -1.2 is: " << solve( -1.2 ) << endl;
   cout << "Logarithm Gamma for x = 3.1415 is: " << solve( 3.1415 ) << endl;
}

输出

Logarithm Gamma for x = 10 is: 12.8018
Logarithm Gamma for 15! which is x = 16 is: 27.8993
Logarithm Gamma for x = -1.2 is: 1.57918
Logarithm Gamma for x = 3.1415 is: 0.827604

使用 gamma() 和 log() 函数

C++ 还为 gamma 和 log() 函数提供了 tgamma() 方法。我们可以用 他们来制定 lgamma()。让我们看看算法以获得清晰的想法。

算法

  • 读取数字 x
  • g := 使用 tgamma( x ) 计算 gamma
  • res := 使用 log( g ) 的对数 gamma
  • 返回结果

示例

#include 
#include 
using namespace std;
float solve( float x ){
   float answer;
   float g = tgamma( x );
   answer = log( g );
   return answer;
}
int main(){
   cout << "Logarithm Gamma for x = 10 is: " << solve( 10 ) << endl;
   cout << "Logarithm Gamma for 15! which is x = 16 is: " << solve( 16 ) << endl;
   cout << "Logarithm Gamma for x = -1.2 is: " << solve( -1.2 ) << endl;
   cout << "Logarithm Gamma for x = 3.1415 is: " << solve( 3.1415 ) << endl;
}

输出

Logarithm Gamma for x = 10 is: 12.8018
Logarithm Gamma for 15! which is x = 16 is: 27.8993
Logarithm Gamma for x = -1.2 is: 1.57918
Logarithm Gamma for x = 3.1415 is: 0.827604

使用 Factorial() 和 log() 函数

在上一个示例中,我们看到了 tgamma() 和 log() 方法的使用。我们可以 定义我们的阶乘()函数,但这只接受正数。让我们看看 算法以便更好地理解。

算法

  • 定义阶乘函数,需要 n

  • 如果 n 为 1,则

    • 返回n

    PLC编程入门基础知识 中文doc版
    PLC编程入门基础知识 中文doc版

    可编程序控制器,英文称Programmable Controller,简称PC。但由于PC容易和个人计算机(Personal Computer)混淆,故人们仍习惯地用PLC作为可编程序控制器的缩写。它是一个以微处理器为核心的数字运算操作的电子系统装置,专为在工业现场应用而设计,它采用可编程序的存储器,用以在其内部存储执行逻辑运算、顺序控制、定时/计数和算术运算等操作指令,并通过数字式或模拟式的输入、输出接口,控制各种类型的机械或生产过程。本平台提供PLC编程入门基础知识下载,需要的朋友们下载看看吧!

    下载

    立即学习C++免费学习笔记(深入)”;

  • 否则

    • 返回 n * 阶乘 ( n - 1 )

    立即学习C++免费学习笔记(深入)”;

  • 结束如果

  • 在 main 方法中,用数字 x 求 x 的 log gamma

  • g := 阶乘( x - 1)

  • res := 使用 log( g ) 求 g 的自然对数

  • 返回结果

示例

#include 
#include 
using namespace std;
long fact( int n ){
   if( n == 1 ) {
      return n;
   } else {
      return n * fact( n - 1);
   }
}
float solve( float x ){
   float answer;
   float g = fact( x - 1 );
   answer = log( g );
   return answer;
}
int main(){
   cout << "Logarithm Gamma for x = 10 is: " << solve( 10 ) << endl;
   cout << "Logarithm Gamma for 15! which is x = 16 is: " << solve( 16 ) << endl;
   cout << "Logarithm Gamma for x = -1.2 is: " << solve( -1.2 ) << endl;
}

输出

Logarithm Gamma for x = 10 is: 12.8018
Logarithm Gamma for 15! which is x = 16 is: 27.8993
Segmentation fault (core dumped)

结论

伽马方法有时被称为阶乘方法的扩展。 由于伽玛或阶乘方法增长得如此之快,我们可以对其使用对数。在这个 文章中,我们看到了一些对给定数字执行对数伽玛的技术 X。最初,我们使用默认函数,即 C++ 中 cmath 库中的 lgamma()。 第二种方法是使用 tgamma() 和 log(),最后定义我们的阶乘方法。 然而,最终方法仅限于正数。它不适用于负数 数字。而且它只对整数表现良好。

相关文章

c++速学教程(入门到精通)
c++速学教程(入门到精通)

c++怎么学习?c++怎么入门?c++在哪学?c++怎么学才快?不用担心,这里为大家提供了c++速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!

下载

相关标签:

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
python如何计算数的阶乘
python如何计算数的阶乘

方法:1、使用循环;2、使用递归;3、使用math模块;4、使用reduce函数。更多详细python如何计算数的阶乘的内容,可以阅读下面的文章。

157

2023.11.13

python求阶乘教程大全
python求阶乘教程大全

本专题整合了python求阶乘相关教程,阅读专题下面的文章了解更多详细内容。

8

2025.11.08

python语言求阶乘
python语言求阶乘

本专题整合了python中阶乘相关教程,阅读专题下面的文章了解更多详细步骤。

20

2025.12.06

页面置换算法
页面置换算法

页面置换算法是操作系统中用来决定在内存中哪些页面应该被换出以便为新的页面提供空间的算法。本专题为大家提供页面置换算法的相关文章,大家可以免费体验。

387

2023.08.14

php网站源码教程大全
php网站源码教程大全

本专题整合了php网站源码相关教程,阅读专题下面的文章了解更多详细内容。

0

2025.12.31

视频文件格式
视频文件格式

本专题整合了视频文件格式相关内容,阅读专题下面的文章了解更多详细内容。

2

2025.12.31

不受国内限制的浏览器大全
不受国内限制的浏览器大全

想找真正自由、无限制的上网体验?本合集精选2025年最开放、隐私强、访问无阻的浏览器App,涵盖Tor、Brave、Via、X浏览器、Mullvad等高自由度工具。支持自定义搜索引擎、广告拦截、隐身模式及全球网站无障碍访问,部分更具备防追踪、去谷歌化、双内核切换等高级功能。无论日常浏览、隐私保护还是突破地域限制,总有一款适合你!

6

2025.12.31

出现404解决方法大全
出现404解决方法大全

本专题整合了404错误解决方法大全,阅读专题下面的文章了解更多详细内容。

17

2025.12.31

html5怎么播放视频
html5怎么播放视频

想让网页流畅播放视频?本合集详解HTML5视频播放核心方法!涵盖<video>标签基础用法、多格式兼容(MP4/WebM/OGV)、自定义播放控件、响应式适配及常见浏览器兼容问题解决方案。无需插件,纯前端实现高清视频嵌入,助你快速打造现代化网页视频体验。

3

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
CSS3 教程
CSS3 教程

共18课时 | 4.1万人学习

Git 教程
Git 教程

共21课时 | 2.3万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.0万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号