0

0

自动机器学习Python等效代码解释

PHPz

PHPz

发布时间:2023-08-22 20:25:10

|

1362人浏览过

|

来源于tutorialspoint

转载

自动机器学习python等效代码解释

介绍

机器学习是一个快速发展的领域,新的技术和算法不断涌现。然而,创建和增强机器学习模型可能是一项耗时且具有挑战性的任务,需要高度的专业知识。自动化机器学习,通常称为autoML,旨在通过自动化一些繁重的任务,如特征工程、超参数调整和模型选择,简化机器学习模型的创建和优化过程。

auto-sklearn是一个强大的开源自动化机器学习框架,构建在Python中最著名的机器学习库之一scikit-learn之上。它通过贝叶斯优化和元学习,在给定数据集上自动搜索潜在的机器学习流水线,并自动识别最佳模型和超参数。本教程将介绍在Python中使用Auto-sklearn的用法,包括安装、导入数据、数据准备、创建和训练模型以及评估模型效果的指导。即使是初学者也可以使用Auto-sklearn快速简单地创建强大的机器学习模型。

在node-red中处理错误的方法

Auto-sklearn

使用高效的开源软件程序Auto-sklearn自动化创建和持续改进机器学习模型。使用贝叶斯优化和元学习自动找到特定数据集的理想模型和超参数,这本身是基于著名的机器学习程序scikit-learn的。

只有少数几个autosklearn为分类和回归问题创建的应用程序包括自然语言处理、图片分类和时间序列预测。

立即学习Python免费学习笔记(深入)”;

该库通过对潜在的机器学习流程集合进行搜索来运行,其中包括特征工程、模型选择和数据准备过程。它使用贝叶斯优化有效地搜索这个空间,并通过元学习从先前的测试中不断提高搜索效率。

此外,Auto-sklearn还提供了一系列强大的功能,包括动态集成选择、自动模型集成和主动学习。此外,它还提供了简单易用的API,用于开发、测试和训练模型。

AutoML 代码

让我们现在使用Auto-sklearn更详细地检查AutoML代码。我们将使用scikit-learn中的数字数据集,这是一个手写数字的数据集。预测从数字图片中的数字是目标。这是代码 -

Program

的中文翻译为:

程序

import autosklearn.classification
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split

# Load the dataset
X, y = load_digits(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)

# Create and fit the AutoML model
automl = autosklearn.classification.AutoSklearnClassifier(time_left_for_this_task=180, per_run_time_limit=30)
automl.fit(X_train, y_train)

# Evaluate the model on the test set
print("Accuracy:", automl.score(X_test, y_test))

输出

Accuracy: 0.9866666666666667

代码解释

这个程序使用自动化机器学习(AutoML)从MNIST数据集中对手写数字进行分类,其中包括使用Auto-sklearn模块。以下是代码的简要概述−

  • 从autosklearn.classification模块导入AutoSklearnClassifier类,该类包含将被使用的AutoML分类模型,导入autosklearn.classification模块。

  • 从sklearn.datasets导入load_digits函数:这将从sklearn.datasets包中导入MNIST数据集的load_digits函数。

  • 从sklearn中选择模型。MNIST数据集使用sklearn.model selection模块中的train test split函数分为训练集和测试集,这里进行了导入。

  • 加载了MNIST数据集,输入特征存储在X中,相应的标签存储在y中。X, y = load_digits(return_X_y=True):这将加载MNIST数据集。

    Copilot
    Copilot

    Copilot是由微软公司开发的一款AI生产力工具,旨在通过先进的人工智能技术,帮助用户快速完成各种任务,提升工作效率。

    下载
  • X训练集、X测试集、y训练集、y测试集 = train_test_split(X, y, random_state=1)

  • 将数据集按照75:25的比例划分为训练集和测试集,并将随机种子设置为1以确保可重复性
  • Automl等同于autosklearn.classification。AutoSklearnClassifier(每次运行时间限制=30,此任务剩余时间=180):将在MNIST数据集上训练的AutoML模型形成为AutoSklearnClassifier类的实例。每次运行时间限制表示每个单独模型可以运行的最长时间(以秒为单位),而此任务的剩余时间表示AutoML过程可以运行的最长时间(以秒为单位)。

  • 使用 automl.fit 函数(X train, y train),通过训练集 X train 和相关标签 Y train 训练 AutoSklearnClassifier 模型。

  • accuracy:", print(X test, y test), automl.score 这确定了AutoSklearnClassifier模型在评估其在X test和Y test相关标签上的性能后,在测试集上的准确性。score方法给出了模型在给定数据集上的准确性。

上述代码实现了AutoML方法,这是一种机器学习技术,可以自动化模型构建过程的每一步,包括特征选择、超参数调整和数据准备。即使是非专家也可以借助AutoML创建强大的模型,这减少了创建机器学习模型所需的人工工作量。

首先,将所需的库,如pandas,numpy,sklearn和tpot,导入到代码中。Sklearn用于机器学习任务,如数据预处理、模型选择和评估,Pandas用于数据操作,NumPy用于数值计算。实现AutoML算法的主要库是TPOT。

然后使用pandas的read_csv函数加载数据集,并将输入特征和输出标签分开存储在不同的变量中。'y'变量保存输出的标签,而'X'变量存储输入的特征。

为了适应数据并生成机器学习模型,代码首先加载数据集,然后创建TPOTRegressor类的一个实例。TPOTRegressor类是TPOTBase类的一个子类,使用遗传算法选择特征和调整超参数。TPOTRegressor类处理回归问题,而TPOTClassifier类处理分类问题。

使用Sklearn的train-test-split方法将数据集分为训练集和测试集。这是机器学习中常见的做法,将数据分为两个集合:一个用于拟合模型的训练集,一个用于评估模型性能的测试集。

一旦数据被分割,TPOTRegressor实例的fit方法被调用,该方法会根据训练数据调整模型。通过fit技术,使用遗传算法找到给定数据的最佳特征子集和超参数。然后将最佳模型返回。

然后,通过使用评分方法,代码对模型在测试集上的性能进行评估,以确定模型的准确性。准确性得分表示模型与数据的拟合程度,值越接近1表示拟合程度越好。

最佳模型随后使用导出函数导出到一个Python文件中,同时附带其在测试集上的准确度得分。

结论

总之,Auto-sklearn是一个强大的库,可以简化机器学习模型的创建和改进过程。通过自动寻找给定数据集的最佳模型和超参数,它可以节省时间和精力。本教程介绍了如何在Python中使用Auto-sklearn,包括安装它、导入数据、准备数据、创建和训练模型以及评估模型性能的指导。即使是新手也可以使用Auto-sklearn快速简单地创建强大的机器学习模型。

相关文章

python速学教程(入门到精通)
python速学教程(入门到精通)

python怎么学习?python怎么入门?python在哪学?python怎么学才快?不用担心,这里为大家提供了python速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!

下载

相关标签:

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
excel制作动态图表教程
excel制作动态图表教程

本专题整合了excel制作动态图表相关教程,阅读专题下面的文章了解更多详细教程。

20

2025.12.29

freeok看剧入口合集
freeok看剧入口合集

本专题整合了freeok看剧入口网址,阅读下面的文章了解更多网址。

65

2025.12.29

俄罗斯搜索引擎Yandex最新官方入口网址
俄罗斯搜索引擎Yandex最新官方入口网址

Yandex官方入口网址是https://yandex.com;用户可通过网页端直连或移动端浏览器直接访问,无需登录即可使用搜索、图片、新闻、地图等全部基础功能,并支持多语种检索与静态资源精准筛选。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

197

2025.12.29

python中def的用法大全
python中def的用法大全

def关键字用于在Python中定义函数。其基本语法包括函数名、参数列表、文档字符串和返回值。使用def可以定义无参数、单参数、多参数、默认参数和可变参数的函数。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

16

2025.12.29

python改成中文版教程大全
python改成中文版教程大全

Python界面可通过以下方法改为中文版:修改系统语言环境:更改系统语言为“中文(简体)”。使用 IDE 修改:在 PyCharm 等 IDE 中更改语言设置为“中文”。使用 IDLE 修改:在 IDLE 中修改语言为“Chinese”。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

16

2025.12.29

C++的Top K问题怎么解决
C++的Top K问题怎么解决

TopK问题可通过优先队列、partial_sort和nth_element解决:优先队列维护大小为K的堆,适合流式数据;partial_sort对前K个元素排序,适用于需有序结果且K较小的场景;nth_element基于快速选择,平均时间复杂度O(n),效率最高但不保证前K内部有序。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

12

2025.12.29

php8.4实现接口限流的教程
php8.4实现接口限流的教程

PHP8.4本身不内置限流功能,需借助Redis(令牌桶)或Swoole(漏桶)实现;文件锁因I/O瓶颈、无跨机共享、秒级精度等缺陷不适用高并发场景。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

134

2025.12.29

抖音网页版入口在哪(最新版)
抖音网页版入口在哪(最新版)

抖音网页版可通过官网https://www.douyin.com进入,打开浏览器输入网址后,可选择扫码或账号登录,登录后同步移动端数据,未登录仅可浏览部分推荐内容。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

63

2025.12.29

快手直播回放在哪看教程
快手直播回放在哪看教程

快手直播回放需主播开启功能才可观看,主要通过三种路径查看:一是从“我”主页进入“关注”标签再进主播主页的“直播”分类;二是通过“历史记录”中的“直播”标签页找回;三是进入“个人信息查阅与下载”里的“直播回放”选项。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

18

2025.12.29

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.6万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.0万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号