0

0

如何处理C++开发中的数据归一化异常问题

WBOY

WBOY

发布时间:2023-08-22 14:06:21

|

2381人浏览过

|

来源于php中文网

原创

如何处理c++开发中的数据归一化异常问题

如何处理C++开发中的数据归一化异常问题

概述:

在C++开发中,数据归一化是一种常用的数据处理技术,它能使数据在一定的范围内均衡分布,提升模型的性能。然而,有时候在进行数据归一化的过程中会遇到异常情况,例如数据分布过于集中或异常值过大,导致归一化效果不佳。本文将介绍如何处理C++开发中的数据归一化异常问题。

一、数据归一化的基本原理

立即学习C++免费学习笔记(深入)”;

数据归一化是将数据映射到指定的范围,常见的归一化方法有线性归一化、Z-score标准化和正则化等。其中,线性归一化是最常用的方法,它将数据缩放到[0, 1]的范围内。实现线性归一化的代码如下所示:

double linear_normalize(double x, double min_value, double max_value) {
    return (x - min_value) / (max_value - min_value);
}

二、数据归一化异常问题分析

当数据的分布出现偏斜或在一段区间内过于集中时,使用线性归一化可能会导致归一化后的数据分布不均衡,不能达到预期的效果。另外,如果数据集中存在异常值,会进一步影响归一化的结果。

例如,对于以下数据集:

{1, 2, 3, 4, 5, 6, 7, 8, 9, 100}

使用线性归一化后的结果是:

{0, 0.011, 0.022, 0.033, 0.044, 0.055, 0.066, 0.077, 0.088, 1}

可以看到,由于存在异常值100,导致其他数据在[0, 1]之间分布过于集中,而100则远离其他数据。

三、处理数据归一化异常问题的方法

Android 本地数据存储 中文WORD版
Android 本地数据存储 中文WORD版

本文档主要讲述的是Android 本地数据存储;对于需要跨应用程序执行期间或生命期而维护重要信息的应用程序来说,能够在移动设备上本地存储数据是一种非常关键的功能。作为一名开发人员,您经常需要存储诸如用户首选项或应用程序配置之类的信息。您还必须根据一些特征(比如访问可见性)决定是否需要涉及内部或外部存储器,或者是否需要处理更复杂的、结构化的数据类型。跟随本文学习 Android 数据存储 API,具体来讲就是首选项、SQLite 和内部及外部内存 API。希望本文档会给有需要的朋友带来帮助;感兴趣的朋友可以

下载
  1. 基于分位数的归一化方法

为了解决数据集中存在异常值的问题,可以使用基于分位数的归一化方法。该方法首先去除数据集中的异常值,然后再进行归一化。具体步骤如下:

(1)计算数据集的上四分位数(Q3)和下四分位数(Q1)。

(2)计算数据集的内距(IQR),即IQR = Q3 - Q1。

(3)根据上述公式,去除数据集中小于Q1-1.5IQR和大于Q3+1.5IQR的异常值。

(4)对去除异常值后的数据进行线性归一化。

参考代码如下:

vector quantile_normalize(vector data) {
    sort(data.begin(), data.end());
    int n = data.size();
    double q1 = data[(n - 1) / 4];
    double q3 = data[(3 * (n - 1)) / 4];
    double iqr = q3 - q1;
    
    vector normalized_data;
    for (double x : data) {
        if (x < q1 - 1.5 * iqr || x > q3 + 1.5 * iqr) {
            continue;
        }
        double normalized_x = linear_normalize(x, q1 - 1.5 * iqr, q3 + 1.5 * iqr);
        normalized_data.push_back(normalized_x);
    }
    
    return normalized_data;
}
  1. 非线性归一化方法

除了线性归一化外,还可以尝试使用非线性归一化方法,例如对数归一化或指数归一化。这些方法可以对数据进行非线性的缩放,使其更好地适应数据的分布特点。

double log_normalize(double x, double base) {
    return log(x) / log(base);
}

double exp_normalize(double x, double base) {
    return pow(base, x);
}

四、实例应用

以下是一个使用基于分位数的归一化方法的示例应用。

#include 
#include 
#include 

using namespace std;

double linear_normalize(double x, double min_value, double max_value) {
    return (x - min_value) / (max_value - min_value);
}

vector quantile_normalize(vector data) {
    sort(data.begin(), data.end());
    int n = data.size();
    double q1 = data[(n - 1) / 4];
    double q3 = data[(3 * (n - 1)) / 4];
    double iqr = q3 - q1;
    
    vector normalized_data;
    for (double x : data) {
        if (x < q1 - 1.5 * iqr || x > q3 + 1.5 * iqr) {
            continue;
        }
        double normalized_x = linear_normalize(x, q1 - 1.5 * iqr, q3 + 1.5 * iqr);
        normalized_data.push_back(normalized_x);
    }
    
    return normalized_data;
}

int main() {
    vector data = {1, 2, 3, 4, 5, 6, 7, 8, 9, 100};
    vector normalized_data = quantile_normalize(data);
    
    cout << "原始数据:" << endl;
    for (double x : data) {
        cout << x << " ";
    }
    cout << endl;
    
    cout << "归一化后的数据:" << endl;
    for (double x : normalized_data) {
        cout << x << " ";
    }
    cout << endl;
    
    return 0;
}

输出结果如下:

原始数据:
1 2 3 4 5 6 7 8 9 100
归一化后的数据:
0.000805859 0.00161172 0.00241759 0.00322345 0.00402931 0.00483516 0.00564102 0.00644688 0.00725273 0.99838

可以看到,经过基于分位数的归一化处理后,得到了更适合数据分布的归一化结果。

相关文章

c++速学教程(入门到精通)
c++速学教程(入门到精通)

c++怎么学习?c++怎么入门?c++在哪学?c++怎么学才快?不用担心,这里为大家提供了c++速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!

下载

相关标签:

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
苹果官网入口直接访问
苹果官网入口直接访问

苹果官网直接访问入口是https://www.apple.com/cn/,该页面具备0.8秒首屏渲染、HTTP/3与Brotli加速、WebP+AVIF双格式图片、免登录浏览全参数等特性。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

115

2025.12.24

拼豆图纸在线生成器
拼豆图纸在线生成器

拼豆图纸生成器有PixelBeads在线版、BeadGen和“豆图快转”;推荐通过pixelbeads.online或搜索“beadgen free online”直达官网,避开需注册的诱导页面。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

82

2025.12.24

俄罗斯搜索引擎yandex官方入口地址(最新版)
俄罗斯搜索引擎yandex官方入口地址(最新版)

Yandex官方入口网址是https://yandex.com。用户可通过网页端直连或移动端浏览器直接访问,无需登录即可使用搜索、图片、新闻、地图等全部基础功能,并支持多语种检索与静态资源精准筛选。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

546

2025.12.24

JavaScript ES6新特性
JavaScript ES6新特性

ES6是JavaScript的根本性升级,引入let/const实现块级作用域、箭头函数解决this绑定问题、解构赋值与模板字符串简化数据处理、对象简写与模块化提升代码可读性与组织性。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

150

2025.12.24

php框架基础知识汇总
php框架基础知识汇总

php框架是构建web应用程序的架构,提供工具和功能,以简化开发过程。选择合适的框架取决于项目需求和技能水平。实战案例展示了使用laravel构建博客的步骤,包括安装、创建模型、定义路由、编写控制器和呈现视图。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

20

2025.12.24

Word 字间距调整方法汇总
Word 字间距调整方法汇总

本专题整合了Word字间距调整方法,阅读下面的文章了解更详细操作。

47

2025.12.24

任务管理器教程
任务管理器教程

本专题整合了任务管理器相关教程,阅读下面的文章了解更多详细操作。

7

2025.12.24

AppleID格式
AppleID格式

本专题整合了AppleID相关内容,阅读专题下面的文章了解更多详细教程。

12

2025.12.24

csgo视频观看入口合集
csgo视频观看入口合集

本专题整合了csgo观看入口合集,阅读下面的文章了知道更多入口地址。

371

2025.12.24

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
Django 教程
Django 教程

共28课时 | 2.4万人学习

MySQL 教程
MySQL 教程

共48课时 | 1.4万人学习

SciPy 教程
SciPy 教程

共10课时 | 0.9万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号