0

0

Golang实现图片的分割和内容识别的方法

WBOY

WBOY

发布时间:2023-08-19 14:03:56

|

3005人浏览过

|

来源于php中文网

原创

golang实现图片的分割和内容识别的方法

Golang实现图片的分割和内容识别的方法

随着人工智能和计算机视觉技术的进步,图片的分割和内容识别在各个领域中扮演着越来越重要的角色。本文将介绍如何使用Golang实现图片的分割和内容识别的方法,并附带代码示例。

在开始之前,我们需要先安装几个必要的Go包。首先,我们需要安装"github.com/otiai10/gosseract/v2",它是一个用于文字识别的Golang库。其次,我们还需要安装"gonum.org/v1/gonum/mat",它是一个用于矩阵操作的Golang库。可以使用以下命令进行安装:

go get github.com/otiai10/gosseract/v2
go get -u gonum.org/v1/gonum/...

接下来,我们将通过以下步骤来实现图片的分割和内容识别。

立即学习go语言免费学习笔记(深入)”;

步骤一:读取图片并进行灰度处理

首先,我们需要从文件中读取图片,并将其转换为灰度图像。代码示例如下:

package main

import (
    "fmt"
    "image"
    "image/color"
    "image/jpeg"
    "os"
)

func main() {
    file, err := os.Open("image.jpg")
    if err != nil {
        fmt.Println("图片读取失败:", err)
        return
    }
    defer file.Close()

    img, err := jpeg.Decode(file)
    if err != nil {
        fmt.Println("图片解码失败:", err)
        return
    }

    gray := image.NewGray(img.Bounds())
    for x := gray.Bounds().Min.X; x < gray.Bounds().Max.X; x++ {
        for y := gray.Bounds().Min.Y; y < gray.Bounds().Max.Y; y++ {
            r, g, b, _ := img.At(x, y).RGBA()
            grayColor := color.Gray{(r + g + b) / 3}
            gray.Set(x, y, grayColor)
        }
    }
}

在这段代码中,我们首先打开并读取了一张名为"image.jpg"的图片。然后,我们通过"jpeg.Decode"函数将图片解码为图像对象。接下来,我们创建了一个新的灰度图像对象"gray",并使用双重循环将原始图像转换为灰度图像。

Noya
Noya

让线框图变成高保真设计。

下载

步骤二:进行图片的分割

在得到灰度图像后,我们可以使用一些图像处理算法对图片进行分割。这里我们使用OTSU算法进行阈值分割,代码示例如下:

package main

import (
    "fmt"
    "image"
    "image/color"
    "image/jpeg"
    "math"
    "os"
)

func main() {
    // ...

    // 分割图片
    bounds := gray.Bounds()
    threshold := otsu(gray) // OTSU算法获取阈值
    binary := image.NewGray(bounds)
    for x := bounds.Min.X; x < bounds.Max.X; x++ {
        for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
            if gray.GrayAt(x, y).Y > threshold {
                binary.Set(x, y, color.Gray{255})
            } else {
                binary.Set(x, y, color.Gray{0})
            }
        }
    }
}

// OTSU算法计算阈值
func otsu(img *image.Gray) uint32 {
    var hist [256]int
    bounds := img.Bounds()
    for x := bounds.Min.X; x < bounds.Max.X; x++ {
        for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
            hist[img.GrayAt(x, y).Y]++
        }
    }

    total := bounds.Max.X * bounds.Max.Y
    var sum float64
    for i := 0; i < 256; i++ {
        sum += float64(i) * float64(hist[i])
    }
    var sumB float64
    wB := 0
    wF := 0
    var varMax float64
    threshold := 0

    for t := 0; t < 256; t++ {
        wB += hist[t]
        if wB == 0 {
            continue
        }
        wF = total - wB
        if wF == 0 {
            break
        }
        sumB += float64(t) * float64(hist[t])

        mB := sumB / float64(wB)
        mF := (sum - sumB) / float64(wF)

        var between float64 = float64(wB) * float64(wF) * (mB - mF) * (mB - mF)
        if between >= varMax {
            threshold = t
            varMax = between
        }
    }

    return uint32(threshold)
}

在这段代码中,我们定义了一个名为"otsu"的函数,用于计算OTSU算法的阈值。然后,我们在"main"函数中使用该函数获取阈值。接下来,我们创建一个新的二值图像"binary",并使用双重循环将灰度图像进行阈值分割。

步骤三:进行内容识别

在分割图像后,我们可以使用"gosseract"库对各个区域的内容进行识别。代码示例如下:

package main

import (
    "fmt"
    "image"
    "image/color"
    "image/jpeg"
    "os"
    "strings"

    "github.com/otiai10/gosseract/v2"
)

func main() {
    // ...

    client := gosseract.NewClient()
    defer client.Close()

    texts := make([]string, 0)
    bounds := binary.Bounds()
    for x := bounds.Min.X; x < bounds.Max.X; x++ {
        for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
            if binary.GrayAt(x, y).Y == 255 {
                continue
            }
            sx := x
            sy := y
            ex := x
            ey := y
            for ; ex < bounds.Max.X && binary.GrayAt(ex, y).Y == 0; ex++ {
            }
            for ; ey < bounds.Max.Y && binary.GrayAt(x, ey).Y == 0; ey++ {
            }
            rect := image.Rect(sx, sy, ex, ey)
            subImg := binary.SubImage(rect)

            pix := subImg.Bounds().Max.X * subImg.Bounds().Max.Y
            blackNum := 0
            for i := subImg.Bounds().Min.X; i < subImg.Bounds().Max.X; i++ {
                for j := subImg.Bounds().Min.Y; j < subImg.Bounds().Max.Y; j++ {
                    if subImg.At(i, j) == color.Gray{255} {
                        blackNum++
                    }
                }
            }
            if float64(blackNum)/float64(pix) < 0.1 { // 去除噪音
                continue
            }

            output, _ := client.ImageToText(subImg)
            output = strings.ReplaceAll(output, "
", "")
            output = strings.ReplaceAll(output, " ", "")
            texts = append(texts, output)
        }
    }

    fmt.Println(texts)
}

在这段代码中,我们使用"gosseract"库中的"NewClient"和"Close"函数来创建和关闭识别客户端。然后,我们使用双重循环遍历分割后的二值图像。对于非白色区域,我们获取该区域的坐标范围,并将其转换为子图像。接下来,我们计算子图像中的黑色像素点占比,以去除噪音。最后,我们通过"ImageToText"函数将子图像转换为文本,并将结果保存在"texts"数组中。

通过以上步骤,我们已经完成了使用Golang实现图片的分割和内容识别的方法。你可以根据自己的需要对代码进行修改和优化,以适应不同的场景和需求。希望本文能够对你理解和应用图片的分割和内容识别技术提供一些帮助。

相关专题

更多
php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

7

2025.12.31

php网站源码教程大全
php网站源码教程大全

本专题整合了php网站源码相关教程,阅读专题下面的文章了解更多详细内容。

4

2025.12.31

视频文件格式
视频文件格式

本专题整合了视频文件格式相关内容,阅读专题下面的文章了解更多详细内容。

7

2025.12.31

不受国内限制的浏览器大全
不受国内限制的浏览器大全

想找真正自由、无限制的上网体验?本合集精选2025年最开放、隐私强、访问无阻的浏览器App,涵盖Tor、Brave、Via、X浏览器、Mullvad等高自由度工具。支持自定义搜索引擎、广告拦截、隐身模式及全球网站无障碍访问,部分更具备防追踪、去谷歌化、双内核切换等高级功能。无论日常浏览、隐私保护还是突破地域限制,总有一款适合你!

7

2025.12.31

出现404解决方法大全
出现404解决方法大全

本专题整合了404错误解决方法大全,阅读专题下面的文章了解更多详细内容。

42

2025.12.31

html5怎么播放视频
html5怎么播放视频

想让网页流畅播放视频?本合集详解HTML5视频播放核心方法!涵盖<video>标签基础用法、多格式兼容(MP4/WebM/OGV)、自定义播放控件、响应式适配及常见浏览器兼容问题解决方案。无需插件,纯前端实现高清视频嵌入,助你快速打造现代化网页视频体验。

4

2025.12.31

关闭win10系统自动更新教程大全
关闭win10系统自动更新教程大全

本专题整合了关闭win10系统自动更新教程大全,阅读专题下面的文章了解更多详细内容。

3

2025.12.31

阻止电脑自动安装软件教程
阻止电脑自动安装软件教程

本专题整合了阻止电脑自动安装软件教程,阅读专题下面的文章了解更多详细教程。

3

2025.12.31

html5怎么使用
html5怎么使用

想快速上手HTML5开发?本合集为你整理最实用的HTML5使用指南!涵盖HTML5基础语法、主流框架(如Bootstrap、Vue、React)集成方法,以及无需安装、直接在线编辑运行的平台推荐(如CodePen、JSFiddle)。无论你是新手还是进阶开发者,都能轻松掌握HTML5网页制作、响应式布局与交互功能开发,零配置开启高效前端编程之旅!

2

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
golang socket 编程
golang socket 编程

共2课时 | 0.1万人学习

nginx浅谈
nginx浅谈

共15课时 | 0.8万人学习

golang和swoole核心底层分析
golang和swoole核心底层分析

共3课时 | 0.1万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号