0

0

Python中的图像风格迁移实例

WBOY

WBOY

发布时间:2023-06-11 20:44:25

|

2045人浏览过

|

来源于php中文网

原创

图像风格迁移是一种基于深度学习的技术,可以将一张图像的风格迁移到另一张图像上。近年来,图像风格迁移技术在艺术领域和影视特效领域得到了广泛的应用。在这篇文章中,我们将介绍如何使用python语言实现图像风格迁移。

一、什么是图像风格迁移

图像风格迁移可以将一张图像的风格迁移到另一张图像上。风格可以是艺术家的绘画风格、摄影家的拍摄风格或者其他风格。图像风格迁移的目标是在保留原始图像的内容的同时,使其获得新的风格。

图像风格迁移技术是基于卷积神经网络(CNN)的深度学习技术,其核心思想是通过一个预先训练的CNN模型来提取图像的内容和风格信息,并使用优化方法将两者合成到新的图像上。通常情况下,图像的内容信息通过CNN的深层卷积层来提取,而图像的风格信息则通过CNN的卷积核之间的相关性来提取。

二、实现图像风格迁移

立即学习Python免费学习笔记(深入)”;

在Python中实现图像风格迁移的主要步骤包括载入图像、预处理图像、构建模型、计算损失函数、使用优化方法进行迭代和输出结果。接下来,我们将逐个步骤地介绍这些内容。

  1. 载入图像

首先,我们需要载入一张原始图像和一张参考图像。原始图像是需要进行风格迁移的图像,而参考图像是要迁移的风格图像。载入图像可以使用Python的PIL(Python Imaging Library)模块来完成。

from PIL import Image
import numpy as np

# 载入原始图像和参考图像
content_image = Image.open('content.jpg')
style_image = Image.open('style.jpg')

# 将图像转化为numpy数组,方便后续处理
content_array = np.array(content_image)
style_array = np.array(style_image)
  1. 预处理图像

预处理包括将原始图像和参考图像转化为神经网络可以处理的格式,即将图像转化为Tensor,同时进行标准化处理。这里,我们使用PyTorch提供的预处理模块来完成。

卡通风格海洋生物插画集矢量
卡通风格海洋生物插画集矢量

卡通风格海洋生物插画集矢量适用于平面设计(用在各种平面媒介上,如海报、宣传册、广告、名片等,为设计增添生动有趣的视觉元素)、网页和界面设计(在网站或移动应用的用户界面中,卡通海洋生物的图像可以用来装饰页面)、教育材料(儿童教育图书或互动学习软件)、动画和视频制作(卡通海洋生物的形象可以用于动画制作)等相关设计的AI格式素材。

下载
import torch
import torch.nn as nn
import torchvision.transforms as transforms

# 定义预处理函数
preprocess = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

# 将图像进行预处理
content_tensor = preprocess(content_image).unsqueeze(0).to(device)
style_tensor = preprocess(style_image).unsqueeze(0).to(device)
  1. 构建模型

图像风格迁移的模型可以使用已经在大规模图像数据库上进行训练得到的模型,常用的模型包括VGG19和ResNet。这里我们使用VGG19模型来完成。首先,我们需要载入预训练的VGG19模型,并去掉最后的全连接层,只保留卷积层。然后,我们需要通过修改卷积层的权重来调整图像的内容信息和风格信息。

import torchvision.models as models

class VGG(nn.Module):
    def __init__(self, requires_grad=False):
        super(VGG, self).__init__()
        vgg19 = models.vgg19(pretrained=True).features
        self.slice1 = nn.Sequential()
        self.slice2 = nn.Sequential()
        self.slice3 = nn.Sequential()
        self.slice4 = nn.Sequential()
        self.slice5 = nn.Sequential()
        for x in range(2):
            self.slice1.add_module(str(x), vgg19[x])
        for x in range(2, 7):
            self.slice2.add_module(str(x), vgg19[x])
        for x in range(7, 12):
            self.slice3.add_module(str(x), vgg19[x])
        for x in range(12, 21):
            self.slice4.add_module(str(x), vgg19[x])
        for x in range(21, 30):
            self.slice5.add_module(str(x), vgg19[x])
        if not requires_grad:
            for param in self.parameters():
                param.requires_grad = False

    def forward(self, x):
        h_relu1 = self.slice1(x)
        h_relu2 = self.slice2(h_relu1)
        h_relu3 = self.slice3(h_relu2)
        h_relu4 = self.slice4(h_relu3)
        h_relu5 = self.slice5(h_relu4)
        return h_relu1, h_relu2, h_relu3, h_relu4, h_relu5

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = VGG().to(device).eval()
  1. 计算损失函数

由于图像风格迁移的目标是在保留原始图像的内容的同时,使其获得新的风格,我们需要定义损失函数来达到这个目标。损失函数由两部分组成,一部分是内容损失(content loss),另一部分是风格损失(style loss)。

内容损失可以通过计算原始图像和生成图像在卷积层的特征图之间的均方误差来定义。风格损失则是通过计算生成图像和风格图像在卷积层的特征图之间的Gram矩阵之间的均方误差来定义。这里的Gram矩阵是特征图的卷积核之间的相关性矩阵。

def content_loss(content_features, generated_features):
    return torch.mean((content_features - generated_features)**2)

def gram_matrix(input):
    batch_size , h, w, f_map_num = input.size()
    features = input.view(batch_size * h, w * f_map_num)
    G = torch.mm(features, features.t())
    return G.div(batch_size * h * w * f_map_num)

def style_loss(style_features, generated_features):
    style_gram = gram_matrix(style_features)
    generated_gram = gram_matrix(generated_features)
    return torch.mean((style_gram - generated_gram)**2)

content_weight = 1
style_weight = 1000

def compute_loss(content_features, style_features, generated_features):
    content_loss_fn = content_loss(content_features, generated_features[0])
    style_loss_fn = style_loss(style_features, generated_features[1])
    loss = content_weight * content_loss_fn + style_weight * style_loss_fn
    return loss, content_loss_fn, style_loss_fn
  1. 使用优化方法进行迭代

在计算出损失函数之后,我们可以使用优化方法来调整生成图像的像素值,使其最小化损失函数。常用的优化方法包括梯度下降法和L-BFGS算法。这里,我们使用PyTorch提供的LBFGS优化器完成图像迁移。迭代次数可以根据需要进行调整,通常情况下,2000次迭代可以得到比较好的结果。

from torch.optim import LBFGS

generated = content_tensor.detach().clone().requires_grad_(True).to(device)

optimizer = LBFGS([generated])

for i in range(2000):

    def closure():
        optimizer.zero_grad()
        generated_features = model(generated)
        loss, content_loss_fn, style_loss_fn = compute_loss(content_features, style_features, generated_features)
        loss.backward()
        return content_loss_fn + style_loss_fn

    optimizer.step(closure)

    if i % 100 == 0:
        print('Iteration:', i)
        print('Total loss:', closure().tolist())
  1. 输出结果

最后,我们可以将生成的图像保存到本地,观察图像风格迁移的效果。

import matplotlib.pyplot as plt

generated_array = generated.cpu().detach().numpy()
generated_array = np.squeeze(generated_array, 0)
generated_array = generated_array.transpose(1, 2, 0)
generated_array = np.clip(generated_array, 0, 1)

plt.imshow(generated_array)
plt.axis('off')
plt.show()

Image.fromarray(np.uint8(generated_array * 255)).save('generated.jpg')

三、总结

本文介绍了如何使用Python语言实现图像风格迁移技术。通过载入图像、预处理图像、构建模型、计算损失函数、使用优化方法进行迭代和输出结果的步骤,我们可以将一张图像的风格迁移到另一张图像上。实际应用中,我们可以根据不同的需求调整参考图像和迭代次数等参数,得到更好的结果。

相关文章

python速学教程(入门到精通)
python速学教程(入门到精通)

python怎么学习?python怎么入门?python在哪学?python怎么学才快?不用担心,这里为大家提供了python速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!

下载

相关标签:

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
苹果官网入口直接访问
苹果官网入口直接访问

苹果官网直接访问入口是https://www.apple.com/cn/,该页面具备0.8秒首屏渲染、HTTP/3与Brotli加速、WebP+AVIF双格式图片、免登录浏览全参数等特性。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

115

2025.12.24

拼豆图纸在线生成器
拼豆图纸在线生成器

拼豆图纸生成器有PixelBeads在线版、BeadGen和“豆图快转”;推荐通过pixelbeads.online或搜索“beadgen free online”直达官网,避开需注册的诱导页面。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

82

2025.12.24

俄罗斯搜索引擎yandex官方入口地址(最新版)
俄罗斯搜索引擎yandex官方入口地址(最新版)

Yandex官方入口网址是https://yandex.com。用户可通过网页端直连或移动端浏览器直接访问,无需登录即可使用搜索、图片、新闻、地图等全部基础功能,并支持多语种检索与静态资源精准筛选。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

546

2025.12.24

JavaScript ES6新特性
JavaScript ES6新特性

ES6是JavaScript的根本性升级,引入let/const实现块级作用域、箭头函数解决this绑定问题、解构赋值与模板字符串简化数据处理、对象简写与模块化提升代码可读性与组织性。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

150

2025.12.24

php框架基础知识汇总
php框架基础知识汇总

php框架是构建web应用程序的架构,提供工具和功能,以简化开发过程。选择合适的框架取决于项目需求和技能水平。实战案例展示了使用laravel构建博客的步骤,包括安装、创建模型、定义路由、编写控制器和呈现视图。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

20

2025.12.24

Word 字间距调整方法汇总
Word 字间距调整方法汇总

本专题整合了Word字间距调整方法,阅读下面的文章了解更详细操作。

47

2025.12.24

任务管理器教程
任务管理器教程

本专题整合了任务管理器相关教程,阅读下面的文章了解更多详细操作。

7

2025.12.24

AppleID格式
AppleID格式

本专题整合了AppleID相关内容,阅读专题下面的文章了解更多详细教程。

12

2025.12.24

csgo视频观看入口合集
csgo视频观看入口合集

本专题整合了csgo观看入口合集,阅读下面的文章了知道更多入口地址。

371

2025.12.24

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.4万人学习

SciPy 教程
SciPy 教程

共10课时 | 0.9万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号