0

0

Java如何分析汉诺塔问题

WBOY

WBOY

发布时间:2023-05-14 23:16:04

|

1247人浏览过

|

来源于亿速云

转载

一、汉诺塔问题来源

汉诺塔(tower of hanoi),又称河内塔,是一个源于印度古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘

Java如何分析汉诺塔问题

二、问题分析

从简单问题开始

直接拿64个盘子来想,可能会比较难,我们可以先从1个盘子开始看,如下图:

一个盘子

Java如何分析汉诺塔问题

立即学习Java免费学习笔记(深入)”;

A -> C 

Java如何分析汉诺塔问题

只有一个盘子情况下,我们可以直接将 A 柱子上面的盘子移到 C 柱子上

需要移动一次

两个盘子

当有两个盘子时,我们也可以通过下面方式实现:

A -> B     A->C     B->C

需要移动3次

Java如何分析汉诺塔问题

1.  A -> B

Java如何分析汉诺塔问题

2.  A -> C

Java如何分析汉诺塔问题

 3.  B -> C

Java如何分析汉诺塔问题

 三个盘子

 当有三个盘子时,移动步骤如下:

A -> C     A -> B     C -> B     A -> C     B -> A     B -> C     A -> C

共需要移动7次 

Java如何分析汉诺塔问题

 1.  A -> C

Java如何分析汉诺塔问题

2.  A -> B

Java如何分析汉诺塔问题

 3.  C -> B

Java如何分析汉诺塔问题

4.  A -> C

Java如何分析汉诺塔问题

 5.  B -> A

Java如何分析汉诺塔问题

 6.  B -> C

Java如何分析汉诺塔问题

 7.  A -> C

Java如何分析汉诺塔问题

这就完成了3个盘子的移动

当有 4 个盘子时,这个问题其实就已经很复杂了

规律推导

1个盘子      移动1次

2个盘子      移动3次

3个盘子      移动7次

……

N 个盘子    移动 2^N - 1 次

那么64个盘子就是需要移动 2^64 - 1 次

三、解决问题

我们可以通过递归来解决这个问题,获得正确的移动方式

如果有N个盘子该怎么移动呢?

整体思路

我们可以先将 N - 1 个盘子从 A 柱借助 C 柱移动到 B 柱,再将 A 柱剩下的一个盘子移动到 C柱,然后将 B 柱上的 N - 1 个盘子借助 A 柱移动到 C 柱,就完成了所有柱子的移动(中间具体移动过程暂不讨论)

上代码

public static void hanoi(int num, String src, String help, String dest) {
    if (num == 1) {     // 只有一个盘子的时候直接移动
        System.out.print(src + "->" + dest + "  ");  // 将一个盘子从源柱子挪到目标柱子
    } else {
        hanoi(num - 1, src, dest, help);   // 将n - 1个盘子从源柱子借助目标柱子挪到辅助柱子
        System.out.print(src + "->" + dest + "  ");  // 将一个盘子从源柱子挪到目标柱子
        hanoi(num - 1, help, src, dest);  // 将辅助柱子上n - 1个盘子借助源柱子挪到目标柱子
    }
}
public static void main(String[] args) {
    hanoi(3, "A", "B", "C");
}

这段代码中 src 是源柱子,help是辅助柱子,dest 是目标柱子

这是一个二路递归

运行结果:

Java如何分析汉诺塔问题

 这就成功完成了盘子的移动

四、婆罗门能否完成大梵天的任务

移动 64 个盘子需要多长时间

在这里我们假设婆罗门的人都非常聪明,不需要思考就直接能知道正确的移动方法,移动一个盘子需要一秒钟,一直不停的移

将2^64 - 1秒换算为年约为5849 4241 7355年(5849.42亿年),而地球存在至今不过45亿年,太阳系的预期寿命据说也就是数百亿年。真的过了5849.42亿年,不说太阳系和银河系,至少地球上的一切生命,连同梵塔、庙宇等,都早已经灰飞烟灭。

相关预言

有预言说,这件事完成时宇宙会在一瞬间闪电式毁灭。也有人相信婆罗门至今还在一刻不停地搬动着圆盘

计算机移动64个盘子需要多长时间 ?

我的电脑核心频率为2.90GHz,也就是每秒钟运算 29 亿次,那么移动 2^64 - 1次需要的时间约为201年

相关文章

java速学教程(入门到精通)
java速学教程(入门到精通)

java怎么学习?java怎么入门?java在哪学?java怎么学才快?不用担心,这里为大家提供了java速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!

下载

相关标签:

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

7

2025.12.31

php网站源码教程大全
php网站源码教程大全

本专题整合了php网站源码相关教程,阅读专题下面的文章了解更多详细内容。

4

2025.12.31

视频文件格式
视频文件格式

本专题整合了视频文件格式相关内容,阅读专题下面的文章了解更多详细内容。

7

2025.12.31

不受国内限制的浏览器大全
不受国内限制的浏览器大全

想找真正自由、无限制的上网体验?本合集精选2025年最开放、隐私强、访问无阻的浏览器App,涵盖Tor、Brave、Via、X浏览器、Mullvad等高自由度工具。支持自定义搜索引擎、广告拦截、隐身模式及全球网站无障碍访问,部分更具备防追踪、去谷歌化、双内核切换等高级功能。无论日常浏览、隐私保护还是突破地域限制,总有一款适合你!

7

2025.12.31

出现404解决方法大全
出现404解决方法大全

本专题整合了404错误解决方法大全,阅读专题下面的文章了解更多详细内容。

42

2025.12.31

html5怎么播放视频
html5怎么播放视频

想让网页流畅播放视频?本合集详解HTML5视频播放核心方法!涵盖<video>标签基础用法、多格式兼容(MP4/WebM/OGV)、自定义播放控件、响应式适配及常见浏览器兼容问题解决方案。无需插件,纯前端实现高清视频嵌入,助你快速打造现代化网页视频体验。

4

2025.12.31

关闭win10系统自动更新教程大全
关闭win10系统自动更新教程大全

本专题整合了关闭win10系统自动更新教程大全,阅读专题下面的文章了解更多详细内容。

3

2025.12.31

阻止电脑自动安装软件教程
阻止电脑自动安装软件教程

本专题整合了阻止电脑自动安装软件教程,阅读专题下面的文章了解更多详细教程。

3

2025.12.31

html5怎么使用
html5怎么使用

想快速上手HTML5开发?本合集为你整理最实用的HTML5使用指南!涵盖HTML5基础语法、主流框架(如Bootstrap、Vue、React)集成方法,以及无需安装、直接在线编辑运行的平台推荐(如CodePen、JSFiddle)。无论你是新手还是进阶开发者,都能轻松掌握HTML5网页制作、响应式布局与交互功能开发,零配置开启高效前端编程之旅!

2

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
Kotlin 教程
Kotlin 教程

共23课时 | 2.1万人学习

C# 教程
C# 教程

共94课时 | 5.7万人学习

Java 教程
Java 教程

共578课时 | 39.8万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号