0

0

AI项目这些致命错误,你都犯过吗?

WBOY

WBOY

发布时间:2023-04-20 08:10:06

|

977人浏览过

|

来源于51CTO.COM

转载

​译者 | 布加迪

审校 | 孙淑娟

家作
家作

淘宝推出的家装家居AI创意设计工具

下载

由于数据是人工智能(AI)的核心,因此AI和机器学习(ML)系统需要足够多的优质数据来学习也就不足为奇了。一般需要大量优质数据,对于监督学习方法尤为如此,才能正确训练AI或ML系统。具体需要多少数据,取决于所实施的AI的模式、所使用的算法以及内部数据与第三方数据等其他因素。比如说,神经网络需要大量数据来训练,而决策树或贝叶斯分类器不需要那么多数据就能获得高质量结果。

于是,你可能认为数据越多越好,对吧?请再想想。拥有大量数据(甚至EB级数据)的组织意识到,拥有更多数据并不代表如期望的那样可以解决问题。确实,数据越多,问题越多。拥有的数据越多,需要清理和准备的数据就越多,需要标记和管理的数据就越多,需要加强安全、做好保护、减少偏误及其他措施的数据就越多。当开始增加数据量时,小项目会迅速变成大项目。事实上,大量数据往往会扼杀项目。

很显然,识别业务问题与整理数据以解决该问题之间缺少的步骤是,确定需要哪些数据、实际需要其中的多少数据。需要足够多的数据,但切忌过多:不多不少刚刚好。遗憾的是,组织常常还没有了解数据,就贸然上手AI项目。组织要回答诸多问题,包括弄清楚数据在哪里、已经有多少数据、处于什么状态、数据的哪些特征最重要、内外数据的使用、数据访问难题、增强现有数据方面的要求,以及其他关键因素和问题。如果不回答这些问题,AI项目可能会失败,甚至淹没在数据汪洋中。

1.更好地了解数据

为了了解自己需要多少数据,先要了解数据在AI项目的结构中所处的位置。有一种直观的方式可帮助我们了解从数据中获得的不断增加的价值,那就是“DIKUW金字塔”(有时也叫“DIKW 金字塔”),它显示了数据基础如何通过信息、知识、理解和智慧,帮助获取更大的价值。

凭借坚实的数据基础,你可以在下一个信息层获得更深的洞察力,这可以帮助你回答有关该数据的基本问题。一旦在数据之间建立了基本的联系以获得信息洞察力,就可以在该信息中找到模式,了解各部分信息如何连接在一起,从而获得更深入的洞察力。组织可以在知识层的基础上,进一步了解这些模式为什么会出现,从而获得更多价值,帮助了解底层模式。最后,你可以在智慧层通过深入了解信息决策的因果关系,从信息中获得最大的价值。

最近的这股AI浪潮最关注的是知识层,因为机器学习在信息层之上提供了识别模式的洞察力。遗憾的是,机器学习在理解层遇到了瓶颈,因为找出模式不足以进行推理。我们有机器学习,却没有了解模式为什么会出现的机器推理。每当你与聊天机器人交互时,都能看到这一局限性。虽然基于机器学习的自然语言处理(NLP)非常擅长理解人的语音、推测意图,但它在试图理解和推理时遇到了限制。比如说,如果你问语音助手明天要不要穿雨衣,它不明白你在问天气。人类要向机器提供这种洞察力,因为语音助手不知道雨实际上是什么。

2.保持数据意识,以避免失败

大数据已教会我们如何处理大量数据。不仅仅涉及数据如何存储,还涉及如何处理、操作和分析所有这些数据。机器学习能够处理组织收集的种种不同类型的非结构化数据、半结构化数据或结构化数据,从而增添了更多的价值。的确,最近的这股AI浪潮实际上是大数据驱动的分析浪潮。

但正是由于这个原因,一些组织在AI方面遭遇重创。它们不是从以数据为中心的角度运行AI项目,而是专注于功能方面。为了驾驭AI项目并避免致命错误,组织不仅要更好地理解AI和机器学习,还要更好地理解大数据的几个“V”。这不仅关乎有多少数据,还关乎数据的性质。大数据的其中几个V包括:

  • 数量:拥有的大数据的绝对数量。
  • 速度:大数据变化的速度。成功运用AI意味着将AI运用于高速数据。
  • 多样性:数据可以有多种不同的格式,包括数据库等结构化数据、发票等半结构化数据以及电子邮件、图像和视频文件等非结构化数据。成功的AI系统可以处理这种多样性。
  • 真实性:这是指数据的质量和准确性以及你对该数据的信任程度。垃圾进垃圾出,在数据驱动的AI系统中尤为如此。因此,成功的AI系统需要能够处理变化很大的数据质量。

凭借数十年来管理大数据项目的经验,AI方面取得成功的组织主要在大数据方面取得了成功。那些目睹AI项目失败的组织常常以应用程序开发的思维来解决AI问题。

3.错误数据过多、正确数据不足在扼杀AI项目

虽然AI项目起步是正确的,但缺乏必要的数据以及缺乏了解、未解决实际问题在扼杀AI项目。组织在没有真正了解需要的数据和数据质量的情况下继续前进,这带来了真正的挑战。

组织犯这个数据错误的原因之一是,除了使用敏捷或应用程序开发方法外,它们在开展AI项目时没有任何真正的方法。然而成功的组织已意识到,使用以数据为中心的方法将数据理解作为项目方法的第一个阶段。CRISP-DM方法已存在了20多年,它将数据理解指定为确定业务需求后接下来要做的事情。基于CRISP-DM,并结合敏捷方法,AI认知项目管理(CPMAI)方法在第二个阶段需要数据理解。其他成功的方法同样需要在项目早期理解数据,因为AI项目毕竟是数据项目。如果在不了解数据的情况下开展项目,如何在数据基础上构建成功的项目?这肯定是你要避免的致命错误。

原文链接:https://www.forbes.com/sites/cognitiveworld/2022/08/20/are-you-making-these-deadly-mistakes-with-your-ai-projects/?sh=352955946b54

相关专题

更多
页面置换算法
页面置换算法

页面置换算法是操作系统中用来决定在内存中哪些页面应该被换出以便为新的页面提供空间的算法。本专题为大家提供页面置换算法的相关文章,大家可以免费体验。

389

2023.08.14

数据库三范式
数据库三范式

数据库三范式是一种设计规范,用于规范化关系型数据库中的数据结构,它通过消除冗余数据、提高数据库性能和数据一致性,提供了一种有效的数据库设计方法。本专题提供数据库三范式相关的文章、下载和课程。

333

2023.06.29

如何删除数据库
如何删除数据库

删除数据库是指在MySQL中完全移除一个数据库及其所包含的所有数据和结构,作用包括:1、释放存储空间;2、确保数据的安全性;3、提高数据库的整体性能,加速查询和操作的执行速度。尽管删除数据库具有一些好处,但在执行任何删除操作之前,务必谨慎操作,并备份重要的数据。删除数据库将永久性地删除所有相关数据和结构,无法回滚。

2068

2023.08.14

vb怎么连接数据库
vb怎么连接数据库

在VB中,连接数据库通常使用ADO(ActiveX 数据对象)或 DAO(Data Access Objects)这两个技术来实现:1、引入ADO库;2、创建ADO连接对象;3、配置连接字符串;4、打开连接;5、执行SQL语句;6、处理查询结果;7、关闭连接即可。

346

2023.08.31

MySQL恢复数据库
MySQL恢复数据库

MySQL恢复数据库的方法有使用物理备份恢复、使用逻辑备份恢复、使用二进制日志恢复和使用数据库复制进行恢复等。本专题为大家提供MySQL数据库相关的文章、下载、课程内容,供大家免费下载体验。

251

2023.09.05

vb中怎么连接access数据库
vb中怎么连接access数据库

vb中连接access数据库的步骤包括引用必要的命名空间、创建连接字符串、创建连接对象、打开连接、执行SQL语句和关闭连接。本专题为大家提供连接access数据库相关的文章、下载、课程内容,供大家免费下载体验。

319

2023.10.09

数据库对象名无效怎么解决
数据库对象名无效怎么解决

数据库对象名无效解决办法:1、检查使用的对象名是否正确,确保没有拼写错误;2、检查数据库中是否已存在具有相同名称的对象,如果是,请更改对象名为一个不同的名称,然后重新创建;3、确保在连接数据库时使用了正确的用户名、密码和数据库名称;4、尝试重启数据库服务,然后再次尝试创建或使用对象;5、尝试更新驱动程序,然后再次尝试创建或使用对象。

402

2023.10.16

vb连接access数据库的方法
vb连接access数据库的方法

vb连接access数据库方法:1、使用ADO连接,首先导入System.Data.OleDb模块,然后定义一个连接字符串,接着创建一个OleDbConnection对象并使用Open() 方法打开连接;2、使用DAO连接,首先导入 Microsoft.Jet.OLEDB模块,然后定义一个连接字符串,接着创建一个JetConnection对象并使用Open()方法打开连接即可。

371

2023.10.16

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

74

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
CSS3 教程
CSS3 教程

共18课时 | 4.2万人学习

PostgreSQL 教程
PostgreSQL 教程

共48课时 | 6.4万人学习

Git 教程
Git 教程

共21课时 | 2.3万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号