0

0

linux中引入模块机制有什么好处

青灯夜游

青灯夜游

发布时间:2023-04-06 15:28:34

|

1726人浏览过

|

来源于php中文网

原创

linux中引入模块机制的好处:1、应用程序在退出时,可以不管资源的释放或者其他的清除工作,但是模块的退出函数却必须仔细此撤销初始化函数所作的一切;2、该机制有助于缩短模块的开发周期,即注册和卸载都很灵活方便。

linux中引入模块机制有什么好处

本教程操作环境:linux7.3系统、Dell G3电脑。

Linux中引入模块机制有什么好处?

首先,模块是预先注册自己以便服务于将来的某个请求,然后他的初始化函数就立即结束。换句话说,模块初始化函数的任务就是为以后调用函数预先作准备。

好处:

  • 1) 应用程序在退出时,可以不管资源的释放或者其他的清除工作,但是模块的退出函数却必须仔细此撤销初始化函数所作的一切。

  • 2) 该机制有助于缩短模块的开发周期。即:注册和卸载都很灵活方便。

Linux模块机制浅析

Linux允许用户通过插入模块,实现干预内核的目的。一直以来,对linux的模块机制都不够清晰,因此本文对内核模块的加载机制进行简单地分析。

模块的Hello World!

我们通过创建一个简单的模块进行测试。首先是源文件main.c和Makefile。

florian@florian-pc:~/module$ cat main.c

#include
#include
 
static int __init init(void)
{
    printk("Hi module!\n");
    return 0;
}
 
static void __exit exit(void)
{
    printk("Bye module!\n");
}
 
module_init(init);
module_exit(exit);

其中init为模块入口函数,在模块加载时被调用执行,exit为模块出口函数,在模块卸载被调用执行。

florian@florian-pc:~/module$ cat Makefile

obj-m += main.o
#generate the path
CURRENT_PATH:=$(shell pwd)
#the current kernel version number
LINUX_KERNEL:=$(shell uname -r)
#the absolute path
LINUX_KERNEL_PATH:=/usr/src/linux-headers-$(LINUX_KERNEL)
#complie object
all:
    make -C $(LINUX_KERNEL_PATH) M=$(CURRENT_PATH) modules
#clean
clean:
    make -C $(LINUX_KERNEL_PATH) M=$(CURRENT_PATH) clean

其中,obj-m指定了目标文件的名称,文件名需要和源文件名相同(扩展名除外),以便于make自动推导。

然后使用make命令编译模块,得到模块文件main.ko。

florian@florian-pc:~/module$ make

make -C /usr/src/linux-headers-2.6.35-22-generic M=/home/florian/module modules
make[1]: 正在进入目录 `/usr/src/linux-headers-2.6.35-22-generic'
  Building modules, stage 2.
  MODPOST 1 modules
make[1]:正在离开目录 `/usr/src/linux-headers-2.6.35-22-generic'

使用insmod和rmmod命令对模块进行加载和卸载操作,并使用dmesg打印内核日志。

florian@florian-pc:~/module$ sudo insmod main.ko;dmesg | tail -1
[31077.810049] Hi module!
florian@florian-pc:~/module$ sudo rmmod main.ko;dmesg | tail -1
[31078.960442] Bye module!

通过内核日志信息,可以看出模块的入口函数和出口函数都被正确调用执行。

模块文件

使用readelf命令查看一下模块文件main.ko的信息。

florian@florian-pc:~/module$ readelf -h main.ko

ELF Header:
  Magic:   7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
  Class:                             ELF32
  Data:                              2's complement, little endian
  Version:                           1 (current)
  OS/ABI:                            UNIX - System V
  ABI Version:                       0
  Type:                              REL (Relocatable file)
  Machine:                           Intel 80386
  Version:                           0x1
  Entry point address:               0x0
  Start of program headers:          0 (bytes into file)
  Start of section headers:          1120 (bytes into file)
  Flags:                             0x0
  Size of this header:               52 (bytes)
  Size of program headers:           0 (bytes)
  Number of program headers:         0
  Size of section headers:           40 (bytes)
  Number of section headers:         19
  Section header string table index: 16

我们发现main.ko的文件类型为可重定位目标文件,这和一般的目标文件格式没有任何区别。我们知道,目标文件是不能直接执行的,它需要经过链接器的地址空间分配、符号解析和重定位的过程,转化为可执行文件才能执行。

那么,内核将main.ko加载后,是否对其进行了链接呢?

模块数据结构

图可丽批量抠图
图可丽批量抠图

用AI技术提高数据生产力,让美好事物更容易被发现

下载

首先,我们了解一下模块的内核数据结构。

linux3.5.2/kernel/module.h:220

struct module
{
    ……
    /* Startup function. */
    int (*init)(void);
    ……
    /* Destruction function. */
    void (*exit)(void);
    ……
};

模块数据结构的init和exit函数指针记录了我们定义的模块入口函数和出口函数。

模块加载

模块加载由内核的系统调用init_module完成。

linux3.5.2/kernel/module.c:3009

/* This is where the real work happens */
SYSCALL_DEFINE3(init_module, void __user *, umod,
       unsigned long, len, const char __user *, uargs)
{
    struct module *mod;
    int ret = 0;
    ……
    /* Do all the hard work */
    mod = load_module(umod, len, uargs);//模块加载
    ……
    /* Start the module */
    if (mod->init != NULL)
       ret = do_one_initcall(mod->init);//模块init函数调用
    ……
    return 0;
}

系统调用init_module由SYSCALL_DEFINE3(init_module...)实现,其中有两个关键的函数调用。load_module用于模块加载,do_one_initcall用于回调模块的init函数。

函数load_module的实现为。

linux3.5.2/kernel/module.c:2864

/* Allocate and load the module: note that size of section 0 is always
   zero, and we rely on this for optional sections. */
static struct module *load_module(void __user *umod,
                unsigned long len,
                const char __user *uargs)
{
    struct load_info info = { NULL, };
    struct module *mod;
    long err;
    ……
    /* Copy in the blobs from userspace, check they are vaguely sane. */
    err = copy_and_check(&info, umod, len, uargs);//拷贝到内核
    if (err)
       return ERR_PTR(err);
    /* Figure out module layout, and allocate all the memory. */
    mod = layout_and_allocate(&info);//地址空间分配
    if (IS_ERR(mod)) {
       err = PTR_ERR(mod);
       goto free_copy;
    }
    ……
    /* Fix up syms, so that st_value is a pointer to location. */
    err = simplify_symbols(mod, &info);//符号解析
    if (err < 0)
       goto free_modinfo;
    err = apply_relocations(mod, &info);//重定位
    if (err < 0)
       goto free_modinfo;
    ……
}

函数load_module内有四个关键的函数调用。copy_and_check将模块从用户空间拷贝到内核空间,layout_and_allocate为模块进行地址空间分配,simplify_symbols为模块进行符号解析,apply_relocations为模块进行重定位。

由此可见,模块加载时,内核为模块文件main.ko进行了链接的过程!

至于函数do_one_initcall的实现就比较简单了。

linux3.5.2/kernel/init.c:673

int __init_or_module do_one_initcall(initcall_t fn)
{
    int count = preempt_count();
    int ret;
    if (initcall_debug)
       ret = do_one_initcall_debug(fn);
    else
       ret = fn();//调用init module
    ……
    return ret;
}

即调用了模块的入口函数init。

模块卸载

模块卸载由内核的系统调用delete_module完成。

linux3.5.2/kernel/module.c:768

SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
        unsigned int, flags)
{
    struct module *mod;
    char name[MODULE_NAME_LEN];
    int ret, forced = 0;
    ……
    /* Final destruction now no one is using it. */
    if (mod->exit != NULL)
       mod->exit();//调用exit module
    ……
    free_module(mod);//卸载模块
    ……
}

通过回调exit完成模块的出口函数功能,最后调用free_module将模块卸载。

结论

如此看来,内核模块其实并不神秘。传统的用户程序需要编译为可执行程序才能执行,而模块程序只需要编译为目标文件的形式便可以加载到内核,有内核实现模块的链接,将之转化为可执行代码。同时,在内核加载和卸载的过程中,会通过函数回调用户定义的模块入口函数和模块出口函数,实现相应的功能。

相关推荐:《Linux视频教程

相关专题

更多
treenode的用法
treenode的用法

​在计算机编程领域,TreeNode是一种常见的数据结构,通常用于构建树形结构。在不同的编程语言中,TreeNode可能有不同的实现方式和用法,通常用于表示树的节点信息。更多关于treenode相关问题详情请看本专题下面的文章。php中文网欢迎大家前来学习。

529

2023.12.01

C++ 高效算法与数据结构
C++ 高效算法与数据结构

本专题讲解 C++ 中常用算法与数据结构的实现与优化,涵盖排序算法(快速排序、归并排序)、查找算法、图算法、动态规划、贪心算法等,并结合实际案例分析如何选择最优算法来提高程序效率。通过深入理解数据结构(链表、树、堆、哈希表等),帮助开发者提升 在复杂应用中的算法设计与性能优化能力。

1

2025.12.22

磁盘配额是什么
磁盘配额是什么

磁盘配额是计算机中指定磁盘的储存限制,就是管理员可以为用户所能使用的磁盘空间进行配额限制,每一用户只能使用最大配额范围内的磁盘空间。php中文网为大家提供各种磁盘配额相关的内容,教程,供大家免费下载安装。

1343

2023.06.21

如何安装LINUX
如何安装LINUX

本站专题提供如何安装LINUX的相关教程文章,还有相关的下载、课程,大家可以免费体验。

698

2023.06.29

linux find
linux find

find是linux命令,它将档案系统内符合 expression 的档案列出来。可以指要档案的名称、类别、时间、大小、权限等不同资讯的组合,只有完全相符的才会被列出来。find根据下列规则判断 path 和 expression,在命令列上第一个 - ( ) , ! 之前的部分为 path,之后的是 expression。还有指DOS 命令 find,Excel 函数 find等。本站专题提供linux find相关教程文章,还有相关

293

2023.06.30

linux修改文件名
linux修改文件名

本专题为大家提供linux修改文件名相关的文章,这些文章可以帮助用户快速轻松地完成文件名的修改工作,大家可以免费体验。

771

2023.07.05

linux系统安装教程
linux系统安装教程

linux系统是一种可以免费使用,自由传播,多用户、多任务、多线程、多CPU的操作系统。本专题提供linux系统安装教程相关的文章,大家可以免费体验。

571

2023.07.06

linux删除文件夹的方法
linux删除文件夹的方法

linux删除文件夹的方法:1、使用rm -r命令;2、使用rm -rf命令;3、使用find命令结合rm命令;4、使用图形界面。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

969

2024.02.23

苹果官网入口直接访问
苹果官网入口直接访问

苹果官网直接访问入口是https://www.apple.com/cn/,该页面具备0.8秒首屏渲染、HTTP/3与Brotli加速、WebP+AVIF双格式图片、免登录浏览全参数等特性。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

10

2025.12.24

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
PostgreSQL 教程
PostgreSQL 教程

共48课时 | 5.9万人学习

Git 教程
Git 教程

共21课时 | 2.2万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号