关于递归和迭代分别的时间复杂度,递归的时间复杂度是O(N),而迭代的时间复杂度是O(logN),由y=N 和Y=logN两条曲线我们知道,一定是O(logN)更优一些。本文主要和大家分享PHP二分法查找之递归和迭代详解,希望能帮助到大家。
以下是两段代码,和傻瓜式测效率的代码。
$v) {
$right = $middle - 1;
} elseif ($arr[$middle] < $v) {
$left = $middle + 1;
} else {
return $middle;
}
}
return -1;
}
$arr = [];
for ($i=0;$i<300000;$i++){
$arr[] = $i;
}
list($first) = explode(" ",microtime());
echo dichotomyIterationSearch($arr,count($arr),35387);echo '
';
list($second) = explode(" ",microtime());
echo round($second - $first,5)*1000000;
function dichotomyRecursionSearch($arr, $low, $high, $v)
{
$middle = bcp(bcadd($low, $high), 2);
if ($low < $high) {
if ($arr[$middle] > $v) {
$high = $middle - 1;
return dichotomyRecursionSearch($arr, $low, $high, $v);
} elseif ($arr[$middle] < $v) {
$low = $middle + 1;
return dichotomyRecursionSearch($arr, $low, $high, $v);
} else {
return $middle;
}
} elseif ($high == $low) {
if ($arr[$middle] == $v) {
return $middle;
} else {
return -1;
}
}
return -1;
}
$arr = [];
for ($i=0;$i<300000;$i++){
$arr[] = $i;
}
echo "
";
list($first) = explode(" ",microtime());
echo dichotomyRecursionSearch($arr,0, count($arr),35387);echo '
';
list($second) = explode(" ",microtime());
echo round($second - $first, 5)*1000000;相关推荐:










