0

0

基于部分匹配的 Pandas DataFrame 合并教程

心靈之曲

心靈之曲

发布时间:2025-09-28 18:49:13

|

541人浏览过

|

来源于php中文网

原创

基于部分匹配的 pandas dataframe 合并教程

本文旨在介绍如何使用 Pandas 库,基于一个 DataFrame 列中的部分文本匹配另一个 DataFrame 的列,从而实现高效的数据合并。通过提取关键信息并进行连接,最终得到包含完整信息的目标 DataFrame。本文将提供详细的代码示例和步骤说明,帮助读者掌握这种常用的数据处理技巧。

在数据分析和处理中,经常会遇到需要将两个 DataFrame 基于某些关联字段进行合并的情况。但有时,关联字段并非完全一致,而是存在部分匹配的关系。例如,一个 DataFrame 的某一列包含完整的 ID 信息,而另一个 DataFrame 的某一列只包含 ID 的一部分,这时就需要采用一些技巧来实现数据的合并。

以下将通过一个具体的例子,演示如何使用 Pandas 库来实现这种基于部分匹配的 DataFrame 合并。

示例数据

假设我们有两个 DataFrame,df1 和 df2。

df1 包含主机名(Hostname)、区域(Region)和型号(Model)信息:

import pandas as pd

data1 = {'Hostname': ['ServerABC101', 'ServerABC102', 'ServerDDC103', 'ServerDDC609', 'ServerDDC103', 'ServerDDC609'],
         'Region': ['US', 'US', 'PAC', 'Emea', 'PAC', 'Emea'],
         'Model': ['Cisco', 'Cisco', 'Intel', 'Intel', 'Intel', 'Intel']}
df1 = pd.DataFrame(data1)
print("DataFrame df1:\n", df1)

df2 包含站点(Site)、城市(City)和州(State)信息:

data2 = {'Site': ['ABC', 'DDC'],
         'City': ['NYC', 'DAL'],
         'State': ['NY', 'TX']}
df2 = pd.DataFrame(data2)
print("\nDataFrame df2:\n", df2)

我们的目标是将 df1 和 df2 基于 df1['Hostname'] 中的部分文本(站点代码)与 df2['Site'] 进行匹配,最终得到一个包含所有信息的 DataFrame。

解决方案

  1. 提取站点代码:

    稿定AI绘图
    稿定AI绘图

    稿定推出的AI绘画工具

    下载

    首先,我们需要从 df1['Hostname'] 中提取出站点代码。假设站点代码是由 "Server" 后面的三个大写字母组成,我们可以使用正则表达式来实现:

    df1['Site'] = df1['Hostname'].str.extract(r"Server([A-Z]{3})")
    print("\nDataFrame df1 with extracted Site:\n", df1)

    str.extract(r"Server([A-Z]{3})") 的作用是:

    • str.extract(): 用于从字符串列中提取匹配正则表达式的部分。
    • r"Server([A-Z]{3})": 这是一个正则表达式,用于匹配以 "Server" 开头,后跟三个大写字母的字符串。括号 () 用于捕获这三个大写字母,也就是我们需要的站点代码。
  2. 合并 DataFrame:

    现在,我们已经提取出了 df1 中的站点代码,可以基于 Site 列将 df1 和 df2 进行合并。使用 pd.merge() 函数,并将 how 参数设置为 'left',以保留 df1 中的所有行:

    df1 = pd.merge(df1, df2, on='Site', how='left')
    print("\nFinal Merged DataFrame:\n", df1)

    pd.merge(df1, df2, on='Site', how='left') 的作用是:

    • pd.merge(): 用于合并两个 DataFrame。
    • on='Site': 指定基于 Site 列进行合并。
    • how='left': 指定合并方式为左连接,即保留左侧 DataFrame (df1) 的所有行,并将右侧 DataFrame (df2) 中匹配的行添加到左侧 DataFrame。如果右侧 DataFrame 中没有匹配的行,则添加的列将填充为 NaN。

完整代码

import pandas as pd

# 创建 DataFrame df1
data1 = {'Hostname': ['ServerABC101', 'ServerABC102', 'ServerDDC103', 'ServerDDC609', 'ServerDDC103', 'ServerDDC609'],
         'Region': ['US', 'US', 'PAC', 'Emea', 'PAC', 'Emea'],
         'Model': ['Cisco', 'Cisco', 'Intel', 'Intel', 'Intel', 'Intel']}
df1 = pd.DataFrame(data1)

# 创建 DataFrame df2
data2 = {'Site': ['ABC', 'DDC'],
         'City': ['NYC', 'DAL'],
         'State': ['NY', 'TX']}
df2 = pd.DataFrame(data2)

# 提取站点代码
df1['Site'] = df1['Hostname'].str.extract(r"Server([A-Z]{3})")

# 合并 DataFrame
df1 = pd.merge(df1, df2, on='Site', how='left')

# 打印结果
print(df1)

注意事项

  • 正则表达式: 正则表达式的编写需要根据实际情况进行调整。如果站点代码的规则不同,需要修改正则表达式以正确提取。
  • 合并方式: how 参数可以设置为 'left'、'right'、'inner' 或 'outer',根据实际需求选择合适的合并方式。
  • 缺失值处理: 如果 df2 中没有与 df1 匹配的站点代码,合并后的 DataFrame 中相应的列将填充为 NaN。可以根据实际情况选择合适的缺失值处理方法,例如使用 fillna() 函数填充缺失值。

总结

本文介绍了如何使用 Pandas 库,基于部分匹配的文本数据合并 DataFrame。通过提取关键信息和灵活运用 pd.merge() 函数,可以高效地完成数据的整合。这种方法在实际数据处理中非常实用,可以解决许多复杂的数据合并问题。掌握这些技巧,能够显著提升数据分析的效率。

相关专题

更多
js正则表达式
js正则表达式

php中文网为大家提供各种js正则表达式语法大全以及各种js正则表达式使用的方法,还有更多js正则表达式的相关文章、相关下载、相关课程,供大家免费下载体验。

510

2023.06.20

正则表达式不包含
正则表达式不包含

正则表达式,又称规则表达式,,是一种文本模式,包括普通字符和特殊字符,是计算机科学的一个概念。正则表达式使用单个字符串来描述、匹配一系列匹配某个句法规则的字符串,通常被用来检索、替换那些符合某个模式的文本。php中文网给大家带来了有关正则表达式的相关教程以及文章,希望对大家能有所帮助。

247

2023.07.05

java正则表达式语法
java正则表达式语法

java正则表达式语法是一种模式匹配工具,它非常有用,可以在处理文本和字符串时快速地查找、替换、验证和提取特定的模式和数据。本专题提供java正则表达式语法的相关文章、下载和专题,供大家免费下载体验。

737

2023.07.05

java正则表达式匹配字符串
java正则表达式匹配字符串

在Java中,我们可以使用正则表达式来匹配字符串。本专题为大家带来java正则表达式匹配字符串的相关内容,帮助大家解决问题。

211

2023.08.11

正则表达式空格
正则表达式空格

正则表达式空格可以用“s”来表示,它是一个特殊的元字符,用于匹配任意空白字符,包括空格、制表符、换行符等。本专题为大家提供正则表达式相关的文章、下载、课程内容,供大家免费下载体验。

349

2023.08.31

Python爬虫获取数据的方法
Python爬虫获取数据的方法

Python爬虫可以通过请求库发送HTTP请求、解析库解析HTML、正则表达式提取数据,或使用数据抓取框架来获取数据。更多关于Python爬虫相关知识。详情阅读本专题下面的文章。php中文网欢迎大家前来学习。

293

2023.11.13

正则表达式空格如何表示
正则表达式空格如何表示

正则表达式空格可以用“s”来表示,它是一个特殊的元字符,用于匹配任意空白字符,包括空格、制表符、换行符等。想了解更多正则表达式空格怎么表示的内容,可以访问下面的文章。

232

2023.11.17

正则表达式中如何匹配数字
正则表达式中如何匹配数字

正则表达式中可以通过匹配单个数字、匹配多个数字、匹配固定长度的数字、匹配整数和小数、匹配负数和匹配科学计数法表示的数字的方法匹配数字。更多关于正则表达式的相关知识详情请看本专题下面的文章。php中文网欢迎大家前来学习。

528

2023.12.06

c++主流开发框架汇总
c++主流开发框架汇总

本专题整合了c++开发框架推荐,阅读专题下面的文章了解更多详细内容。

80

2026.01.09

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
AngularJS教程
AngularJS教程

共24课时 | 2.5万人学习

【李炎恢】ThinkPHP8.x 后端框架课程
【李炎恢】ThinkPHP8.x 后端框架课程

共50课时 | 4.4万人学习

Swoft2.x速学之http api篇课程
Swoft2.x速学之http api篇课程

共16课时 | 0.9万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号