0

0

Pandas DataFrame中高效拼接文本与提取数值的教程

碧海醫心

碧海醫心

发布时间:2025-09-22 11:19:16

|

310人浏览过

|

来源于php中文网

原创

Pandas DataFrame中高效拼接文本与提取数值的教程

本文将深入探讨在Pandas DataFrame中,如何高效地将固定文本与从现有列中通过正则表达式提取的动态数值进行拼接。我们将详细介绍并对比使用Series.str访问器、str.extract以及str.replace这三种核心方法,以帮助用户根据具体场景选择最合适的策略,实现灵活且强大的数据处理。

在数据分析和预处理过程中,我们经常会遇到需要从某一文本列中提取特定信息(例如数字),并将其与预设的静态文本组合,生成一个新的描述性列。例如,将“p”与提取的第一个数字、空格、“stufe”与提取的第二个数字拼接起来,形成如“p8 stufe 4”这样的格式。直接进行字符串拼接时,如果提取结果是列表形式,需要特别注意如何正确访问列表中的元素。

场景描述与初始数据准备

假设我们有一个Pandas DataFrame,其中包含一列PROJEKT[BEZEICHNUNG],其内容是包含数字的字符串。我们的目标是从这些字符串中提取出两个数字,并将它们与固定文本“P”和“ Stufe ”组合成一个新的列EINGRUPPIERUNG。

首先,我们模拟一些示例数据:

import pandas as pd
import re

# 示例数据
data = {
    'PROJEKT[BEZEICHNUNG]': [
        'blah 8 blah 4',
        'another 8 text 5',
        'item 8 version 5',
        'project 8 code 4',
        'group 7 level 4'
    ]
}
df = pd.DataFrame(data)
print("原始DataFrame:")
print(df)

输出:

原始DataFrame:
  PROJEKT[BEZEICHNUNG]
0        blah 8 blah 4
1     another 8 text 5
2     item 8 version 5
3     project 8 code 4
4      group 7 level 4

如果直接使用str.findall(r'\d+'),我们会得到一个Series,其中每个元素是一个包含所有匹配数字的列表:

match_lists = df['PROJEKT[BEZEICHNUNG]'].str.findall(r'\d+')
print("\n使用str.findall提取的数字列表:")
print(match_lists)

输出:

使用str.findall提取的数字列表:
0    [8, 4]
1    [8, 5]
2    [8, 5]
3    [8, 4]
4    [7, 4]
Name: PROJEKT[BEZEICHNUNG], dtype: object

直接尝试像df["EINGRUPPIERUNG"]="P",match_lists[:][0], ...这样的操作是无效的,因为它混淆了Series操作和Python列表操作。正确的做法是利用Pandas的str访问器。

方法一:利用 str 访问器处理列表元素

当str.findall返回一个包含列表的Series时,我们可以利用Series.str访问器来进一步操作这些列表中的元素。Series.str[index]允许我们按索引访问每个列表中的特定元素。

# 提取所有匹配的数字列表
match = df['PROJEKT[BEZEICHNUNG]'].str.findall(r'\d+')

# 使用str访问器获取列表的第一个和第二个元素
# 注意:这里假设每个列表至少包含两个数字
df['EINGRUPPIERUNG_Method1'] = 'P' + match.str[0] + ' Stufe ' + match.str[1]

print("\n方法一结果(使用str访问器):")
print(df[['PROJEKT[BEZEICHNUNG]', 'EINGRUPPIERUNG_Method1']])

输出:

方法一结果(使用str访问器):
  PROJEKT[BEZEICHNUNG] EINGRUPPIERUNG_Method1
0        blah 8 blah 4               P8 Stufe 4
1     another 8 text 5               P8 Stufe 5
2     item 8 version 5               P8 Stufe 5
3     project 8 code 4               P8 Stufe 4
4      group 7 level 4               P7 Stufe 4

注意事项:

  • 此方法要求str.findall返回的每个列表都包含足够多的元素,否则访问match.str[index]时可能会引发IndexError。在实际应用中,如果数字数量不确定,需要进行错误处理或预先过滤。
  • 适用于当你需要先获取所有匹配项的列表,再从中选择特定项的场景。

方法二:使用 str.extract 进行结构化提取

str.extract是Pandas中一个非常强大的方法,专门用于通过正则表达式的捕获组(capturing groups)来提取结构化数据。它直接返回一个DataFrame,其中每个捕获组对应一列。这使得后续的拼接操作变得非常简洁和直观。

松果AI写作
松果AI写作

专业全能的高效AI写作工具

下载
# 使用str.extract提取两个数字
# 正则表达式 r'(\d+).*(\d+)' 捕获第一个和第二个数字
# expand=True 是默认值,表示返回DataFrame
match_df = df['PROJEKT[BEZEICHNUNG]'].str.extract(r'(\d+).*(\d+)', expand=True)

# 将提取的列与固定文本拼接
df['EINGRUPPIERUNG_Method2'] = 'P' + match_df[0] + ' Stufe ' + match_df[1]

print("\n方法二结果(使用str.extract):")
print(df[['PROJEKT[BEZEICHNUNG]', 'EINGRUPPIERUNG_Method2']])

输出:

方法二结果(使用str.extract):
  PROJEKT[BEZEICHNUNG] EINGRUPPIERUNG_Method2
0        blah 8 blah 4               P8 Stufe 4
1     another 8 text 5               P8 Stufe 5
2     item 8 version 5               P8 Stufe 5
3     project 8 code 4               P8 Stufe 4
4      group 7 level 4               P7 Stufe 4

注意事项:

  • str.extract要求正则表达式中至少有一个捕获组。
  • 如果正则表达式没有匹配到任何内容,对应的列将包含NaN。
  • 此方法在提取多个结构化数据时表现优秀,代码可读性高。

方法三:利用 str.replace 进行模式替换

str.replace方法结合正则表达式的捕获组,可以直接将原始字符串转换为目标格式。通过在替换字符串中使用\1, \2等反向引用(backreferences),可以引用正则表达式中捕获组的内容。

# 使用str.replace和反向引用进行模式替换
df['EINGRUPPIERUNG_Method3'] = df['PROJEKT[BEZEICHNUNG]'].str.replace(
    r'.*(\d+).*(\d+).*',  # 匹配整个字符串,并捕获两个数字
    r'P\1 Stufe \2',      # 使用捕获的数字进行替换
    regex=True            # 必须设置为True以启用正则表达式替换
)

print("\n方法三结果(使用str.replace):")
print(df[['PROJEKT[BEZEICHNUNG]', 'EINGRUPPIERUNG_Method3']])

输出:

方法三结果(使用str.replace):
  PROJEKT[BEZEICHNUNG] EINGRUPPIERUNG_Method3
0        blah 8 blah 4               P8 Stufe 4
1     another 8 text 5               P8 Stufe 5
2     item 8 version 5               P8 Stufe 5
3     project 8 code 4               P8 Stufe 4
4      group 7 level 4               P7 Stufe 4

注意事项:

  • regex=True是启用正则表达式替换的关键。
  • 如果正则表达式没有匹配到整个字符串,原始字符串将保持不变。确保正则表达式能够覆盖所有需要转换的情况。
  • 此方法在需要一步到位地完成提取和格式化时非常高效和简洁。

选择建议与总结

这三种方法各有优势,适用于不同的场景:

  1. Series.str访问器 (match.str[0]等):

    • 适用场景: 当你已经通过str.findall获取了所有匹配项的列表,并且需要从这些列表中精确选择特定索引的元素时。
    • 优点: 直观地处理列表中的元素。
    • 缺点: 需要确保列表长度,否则可能出错;如果匹配项数量不固定,处理会比较复杂。
  2. str.extract:

    • 适用场景: 当你需要从字符串中提取多个结构化的数据片段,并将它们作为独立的列进行处理时。
    • 优点: 返回DataFrame,结构清晰,便于后续操作;正则表达式捕获组直接对应列,代码可读性好。
    • 缺点: 如果只有一个捕获组,返回的是Series,需要注意类型转换。
  3. str.replace (结合反向引用):

    • 适用场景: 当你希望一步到位地将原始字符串转换为新的格式,其中新格式的内容是原始字符串中提取出的部分时。

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

749

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

635

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

758

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

618

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1262

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

577

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

706

2023.08.11

php与html混编教程大全
php与html混编教程大全

本专题整合了php和html混编相关教程,阅读专题下面的文章了解更多详细内容。

1

2026.01.13

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 3万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.1万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号