0

0

mysqlmysql如何监控慢查询执行时间

P粉602998670

P粉602998670

发布时间:2025-09-21 08:07:01

|

737人浏览过

|

来源于php中文网

原创

启用慢查询日志并设置long_query_time阈值,结合log_queries_not_using_indexes和min_examined_row_limit等高级配置,可精准捕获问题SQL;通过mysqldumpslow或pt-query-digest工具分析日志,再利用EXPLAIN执行计划、索引优化、SQL重写和数据库结构优化等手段提升性能。

mysqlmysql如何监控慢查询执行时间

要监控MySQL的慢查询执行时间,最直接有效的方法就是启用MySQL自带的慢查询日志功能。通过配置合适的阈值,MySQL会自动记录那些执行时间超过设定的SQL语句,并将它们写入一个专门的日志文件,之后我们就可以对这个日志文件进行分析,找出潜在的性能瓶颈

解决方案

MySQL提供了一套成熟的机制来捕获和记录慢查询。核心在于两个配置项:

slow_query_log
long_query_time

slow_query_log
是一个开关,设置为
ON
即可启用慢查询日志。
long_query_time
则定义了“慢”的标准,单位是秒。任何执行时间超过这个值的查询都会被记录下来。默认值通常是10秒,但在实际生产环境中,我个人觉得这个值可能太高了,很多时候,一个1秒甚至0.5秒的查询都可能对用户体验造成影响,所以我会倾向于把它设置得更低一些,比如0.5秒或1秒,具体看业务响应速度的要求。

要启用和配置这些参数,你可以通过两种方式:

  1. 临时修改(运行时): 连接到MySQL客户端后,执行:

    SET GLOBAL slow_query_log = 'ON';
    SET GLOBAL long_query_time = 1; -- 设置阈值为1秒
    SET GLOBAL slow_query_log_file = '/var/log/mysql/mysql-slow.log'; -- 指定日志文件路径

    这种方式修改的配置在MySQL服务重启后会失效。

  2. 永久修改(配置文件: 编辑MySQL的配置文件

    my.cnf
    (或
    my.ini
    ,具体路径因操作系统和安装方式而异,通常在
    /etc/mysql/my.cnf
    /etc/my.cnf
    ),在
    [mysqld]
    段下添加或修改以下行:

    [mysqld]
    slow_query_log = 1
    long_query_time = 1
    slow_query_log_file = /var/log/mysql/mysql-slow.log
    # 还可以加上其他有用的配置,比如:
    # log_queries_not_using_indexes = 1
    # min_examined_row_limit = 100

    修改配置文件后,需要重启MySQL服务才能生效:

    sudo systemctl restart mysql # 或者 service mysql restart

    日志文件路径 (

    slow_query_log_file
    ) 需要确保MySQL用户对该路径有写入权限。如果路径不存在,MySQL会尝试创建它。

一旦慢查询日志启用并配置好,MySQL就会开始将符合条件的查询写入指定的日志文件。这个日志文件通常是纯文本格式,可以直接查看。

MySQL慢查询日志有哪些高级配置,能更精准地捕获问题?

仅仅启用慢查询日志并设置一个

long_query_time
可能还不够精细。MySQL提供了一些额外的配置项,能帮助我们更精准地捕获那些真正有问题的查询,避免日志文件过大或记录无关紧要的查询。

一个我个人觉得非常重要的配置是

log_queries_not_using_indexes
。把它设置为
ON
后,MySQL会记录所有没有使用索引的查询,即使它们的执行时间没有超过
long_query_time
阈值。这对于发现潜在的索引缺失或索引使用不当的问题非常有帮助,因为很多时候,一个查询在数据量小时可能很快,但随着数据量增长,没有索引的查询会迅速变成性能杀手。

还有

min_examined_row_limit
。这个参数指定了慢查询日志记录的查询至少需要扫描多少行数据。例如,如果设置为100,那么即使一个查询执行时间超过
long_query_time
,但它只扫描了50行,也不会被记录。这有助于过滤掉那些虽然慢,但实际上操作数据量很小的查询(比如,在等待锁或网络延迟导致的慢),让我们更专注于那些真正需要优化数据访问的查询。

另外,

log_output
参数可以控制慢查询日志的输出方式。默认是
FILE
,即将日志写入文件。你也可以设置为
TABLE
,这样慢查询日志就会被写入
mysql.slow_log
表中。写入表的好处是你可以直接通过SQL查询来分析日志,比如统计某个时间段内某个用户执行的慢查询次数,或者找出某个特定SQL模式的慢查询。不过,需要注意的是,将日志写入表可能会对数据库性能产生轻微影响,并且表会持续增长,需要定期清理。我通常还是倾向于文件日志,然后用外部工具分析,这样对数据库本身的压力最小。

还有一些不那么常用但偶尔有用的配置,比如

log_slow_admin_statements
会记录慢的管理语句(如
ALTER TABLE
),
log_slow_slave_statements
则会记录从库上执行的慢查询。这些在特定场景下,比如排查主从延迟问题时,会提供额外的线索。

除了直接查看日志文件,还有哪些工具可以高效分析MySQL慢查询?

直接查看慢查询日志文件虽然可行,但日志文件往往非常庞大,人工分析效率极低。好在,我们有很多工具可以帮助我们高效地分析慢查询日志。

1.

mysqldumpslow
这是MySQL官方自带的一个命令行工具,简单实用,我经常用它来快速对慢查询日志进行初步的聚合分析。它能根据不同的维度(如访问次数、总耗时、平均耗时、发送数据量、锁定时间等)对慢查询进行分组和排序。

常用的用法是:

SekoTalk
SekoTalk

商汤科技推出的AI对口型视频创作工具

下载
mysqldumpslow -s at -t 10 /var/log/mysql/mysql-slow.log

这个命令的含义是:

  • -s at
    : 按平均查询时间(Average Time)排序。常用的排序方式还有
    c
    (count,查询次数),
    l
    (lock time,锁定时间),
    r
    (rows sent,返回行数),
    t
    (time,总耗时)。
  • -t 10
    : 显示前10条慢查询。
  • /var/log/mysql/mysql-slow.log
    : 慢查询日志文件路径。

mysqldumpslow
会将相似的SQL语句(通过参数化处理,比如把
SELECT * FROM users WHERE id = 1
SELECT * FROM users WHERE id = 2
视为同一条语句)聚合起来,然后给出它们的统计信息。这能让你迅速看到哪些类型的查询是主要的慢查询来源。不过,它的功能相对简单,对于复杂的分析场景可能力不从心。

2. Percona Toolkit 的

pt-query-digest
这是我个人在生产环境中更偏爱、也更强大的慢查询分析工具。
pt-query-digest
是 Percona Toolkit 中的一个组件,它不仅能分析慢查询日志文件,还能分析
tcpdump
捕获的网络流量、
SHOW PROCESSLIST
的输出,甚至是
mysql.slow_log
表中的数据。

pt-query-digest
的强大之处在于它能生成非常详细的报告,包括:

  • 慢查询的聚合统计,比
    mysqldumpslow
    更细致。
  • 每个慢查询的详细信息,包括执行次数、总耗时、平均耗时、最大耗时、锁定时间、返回行数、扫描行数等。
  • 对每个慢查询给出潜在的优化建议,比如是否缺少索引。
  • 能够识别出那些“最慢的查询”,并以易读的方式呈现。

一个典型的用法:

pt-query-digest /var/log/mysql/mysql-slow.log > slow_query_report.txt

这会将分析报告输出到一个文本文件。你也可以直接在终端查看。 它有很多参数可以用来过滤、排序、格式化输出,例如:

  • --since
    --until
    : 指定分析时间范围。
  • --limit
    : 限制报告中显示的查询数量。
  • --filter
    : 使用Perl表达式过滤查询。

pt-query-digest
的报告非常详尽,能帮助我们深入理解慢查询的模式和瓶颈所在,是慢查询分析的利器。

慢查询日志分析后,如何优化SQL语句以提升性能?

慢查询日志和分析工具帮我们找到了问题,但真正的挑战在于如何解决这些问题。SQL优化是一个复杂且需要经验的过程,但有一些通用的原则和方法可以遵循。

1. 使用

EXPLAIN
分析执行计划 这是SQL优化最基础也是最关键的一步。当你找到一条慢查询后,把它放到
EXPLAIN
语句前面执行,MySQL会告诉你这条SQL是如何执行的,比如它使用了哪个索引,扫描了多少行,以及连接类型等。

EXPLAIN SELECT * FROM users WHERE username = 'testuser';

关注

EXPLAIN
结果中的几个关键列:

  • type
    : 连接类型,
    const
    ,
    eq_ref
    ,
    ref
    ,
    range
    是比较好的,
    index
    ,
    ALL
    则通常意味着性能问题。
  • rows
    : MySQL估算需要扫描的行数,越少越好。
  • Extra
    : 额外信息,
    Using filesort
    Using temporary
    通常是性能瓶颈的信号,需要重点关注。
    Using index
    (覆盖索引) 是非常好的。
  • key
    : 实际使用的索引。
    key_len
    是索引的长度。

通过分析

EXPLAIN
结果,你可以判断是否缺少索引、索引是否失效、连接顺序是否合理等。

2. 索引优化

  • 创建缺失的索引:这是最常见的优化手段。根据
    WHERE
    子句、
    JOIN
    条件和
    ORDER BY
    子句中的列来创建索引。
  • 复合索引:如果查询条件涉及多个列,可以考虑创建复合索引。例如,
    WHERE col1 = 'A' AND col2 = 'B'
    ,可以创建
    (col1, col2)
    的复合索引。复合索引的列顺序很重要,遵循“最左前缀原则”。
  • 覆盖索引:如果一个索引包含了查询需要的所有列(
    SELECT
    列表和
    WHERE
    列表),那么MySQL可以直接从索引中获取数据,而不需要回表查询,这会大大提高查询效率。
    EXPLAIN
    结果的
    Extra
    列显示
    Using index
    就表示使用了覆盖索引。
  • 避免索引失效
    • 不要在索引列上使用函数(如
      WHERE DATE(create_time) = CURDATE()
      )。
    • 避免在
      WHERE
      子句中对索引列进行隐式类型转换。
    • LIKE '%keyword'
      这样的模糊匹配,如果
      %
      在前面,索引会失效。
    • OR
      条件可能导致索引失效,可以考虑
      UNION ALL
      或拆分查询。

3. SQL语句重写

  • *避免 `SELECT `**:只选择你需要的列,减少数据传输和内存消耗。
  • 优化
    JOIN
    语句
    :确保
    JOIN
    条件有索引,并且连接顺序合理。小表驱动大表通常是好的策略。
  • 减少子查询:很多子查询可以通过
    JOIN
    EXISTS
    语句来优化。
  • 分页优化:对于大的偏移量分页(如
    LIMIT 100000, 10
    ),可以通过先查询ID再关联的方式进行优化,避免全表扫描大量数据。
  • 批量操作:将多条
    INSERT
    UPDATE
    语句合并成一条批量语句,减少网络往返和事务开销。

4. 数据库结构优化

  • 数据类型选择:选择最小且合适的数据类型,比如能用
    INT
    就不用
    BIGINT
    ,能用
    VARCHAR(100)
    就不用
    VARCHAR(255)
  • 范式与反范式:在性能要求高的场景,可以考虑适当的反范式设计,通过增加冗余来减少
    JOIN
    操作,但要权衡数据一致性维护的成本。
  • 分区表:对于超大表,可以考虑使用分区表,将数据分散到不同的物理存储中,提高查询效率,尤其是针对时间范围的查询。

SQL优化是一个持续的过程,需要不断地监控、分析和调整。没有一劳永逸的解决方案,但掌握这些基本方法,足以应对大部分的性能挑战。

相关专题

更多
数据分析工具有哪些
数据分析工具有哪些

数据分析工具有Excel、SQL、Python、R、Tableau、Power BI、SAS、SPSS和MATLAB等。详细介绍:1、Excel,具有强大的计算和数据处理功能;2、SQL,可以进行数据查询、过滤、排序、聚合等操作;3、Python,拥有丰富的数据分析库;4、R,拥有丰富的统计分析库和图形库;5、Tableau,提供了直观易用的用户界面等等。

676

2023.10.12

SQL中distinct的用法
SQL中distinct的用法

SQL中distinct的语法是“SELECT DISTINCT column1, column2,...,FROM table_name;”。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

320

2023.10.27

SQL中months_between使用方法
SQL中months_between使用方法

在SQL中,MONTHS_BETWEEN 是一个常见的函数,用于计算两个日期之间的月份差。想了解更多SQL的相关内容,可以阅读本专题下面的文章。

346

2024.02.23

SQL出现5120错误解决方法
SQL出现5120错误解决方法

SQL Server错误5120是由于没有足够的权限来访问或操作指定的数据库或文件引起的。想了解更多sql错误的相关内容,可以阅读本专题下面的文章。

1092

2024.03.06

sql procedure语法错误解决方法
sql procedure语法错误解决方法

sql procedure语法错误解决办法:1、仔细检查错误消息;2、检查语法规则;3、检查括号和引号;4、检查变量和参数;5、检查关键字和函数;6、逐步调试;7、参考文档和示例。想了解更多语法错误的相关内容,可以阅读本专题下面的文章。

356

2024.03.06

oracle数据库运行sql方法
oracle数据库运行sql方法

运行sql步骤包括:打开sql plus工具并连接到数据库。在提示符下输入sql语句。按enter键运行该语句。查看结果,错误消息或退出sql plus。想了解更多oracle数据库的相关内容,可以阅读本专题下面的文章。

674

2024.04.07

sql中where的含义
sql中where的含义

sql中where子句用于从表中过滤数据,它基于指定条件选择特定的行。想了解更多where的相关内容,可以阅读本专题下面的文章。

571

2024.04.29

sql中删除表的语句是什么
sql中删除表的语句是什么

sql中用于删除表的语句是drop table。语法为drop table table_name;该语句将永久删除指定表的表和数据。想了解更多sql的相关内容,可以阅读本专题下面的文章。

412

2024.04.29

Python 深度学习框架与TensorFlow入门
Python 深度学习框架与TensorFlow入门

本专题深入讲解 Python 在深度学习与人工智能领域的应用,包括使用 TensorFlow 搭建神经网络模型、卷积神经网络(CNN)、循环神经网络(RNN)、数据预处理、模型优化与训练技巧。通过实战项目(如图像识别与文本生成),帮助学习者掌握 如何使用 TensorFlow 开发高效的深度学习模型,并将其应用于实际的 AI 问题中。

4

2026.01.07

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
MySQL 教程
MySQL 教程

共48课时 | 1.6万人学习

MySQL 初学入门(mosh老师)
MySQL 初学入门(mosh老师)

共3课时 | 0.3万人学习

简单聊聊mysql8与网络通信
简单聊聊mysql8与网络通信

共1课时 | 783人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号