0

0

Pandas DataFrame 数据聚合:高效计算分组百分比

碧海醫心

碧海醫心

发布时间:2025-09-04 20:14:16

|

1026人浏览过

|

来源于php中文网

原创

pandas dataframe 数据聚合:高效计算分组百分比

本文旨在介绍如何使用 Pandas DataFrame 对数据进行分组聚合,并计算特定列的百分比。我们将通过一个实际案例,演示如何按设备 (Device) 对带宽使用情况 (Bw_in, Bw_out) 进行汇总,并计算其占总流量 (In, Out) 的百分比,从而高效地实现数据分析目标。

使用 groupby() 和 transform() 进行数据聚合

在 Pandas 中,groupby() 函数允许你根据一个或多个列的值将 DataFrame 分组。然后,你可以对每个组应用聚合函数,例如 sum()、mean()、count() 等。 transform() 函数则允许我们将聚合后的值广播回原始 DataFrame,这对于计算百分比等需要比较每个组内值与组总和的情况非常有用。

示例:

假设我们有以下 DataFrame:

import pandas as pd

data = {'Device': ['Usa123', 'Usa123', 'Emea01', 'Emea01'],
        'int': ['Eth1', 'Eth0', 'Wan1', 'Eth3'],
        'In': [1000, 10000, 1000, 2000],
        'Out': [500, 700, 500, 1000],
        'Bw_in': [100, 200, 150, 200],
        'Bw_out': [75, 80, 90, 70]}
df = pd.DataFrame(data)

print(df)

输出:

  Device   int     In   Out  Bw_in  Bw_out
0  Usa123  Eth1   1000   500    100      75
1  Usa123  Eth0  10000   700    200      80
2  Emea01  Wan1   1000   500    150      90
3  Emea01  Eth3   2000  1000    200      70

现在,我们要计算每个设备的 %InUsage 和 %OutUsage,计算公式如下:

云点滴客户关系管理CRM OA系统
云点滴客户关系管理CRM OA系统

云点滴客户解决方案是针对中小企业量身制定的具有简单易用、功能强大、永久免费使用、终身升级维护的智能化客户解决方案。依托功能强大、安全稳定的阿里云平 台,性价比高、扩展性好、安全性高、稳定性好。高内聚低耦合的模块化设计,使得每个模块最大限度的满足需求,相关模块的组合能满足用户的一系列要求。简单 易用的云备份使得用户随时随地简单、安全、可靠的备份客户信息。功能强大的报表统计使得用户大数据分析变的简单,

下载
  • %InUsage = Bw_in 总和 / In 总和 (按设备分组)
  • %OutUsage = Bw_out 总和 / Out 总和 (按设备分组)

我们可以使用以下代码实现:

g = df.groupby("Device")

df[["%InUsage", "%OutUsage"]] = (
    g[["Bw_in", "Bw_out"]].transform("sum")
    / g[["In", "Out"]].transform("sum").to_numpy()
)
print(df)

代码解释:

  1. g = df.groupby("Device"): 这行代码根据 'Device' 列对 DataFrame 进行分组,并将分组后的对象存储在变量 g 中。
  2. g[["Bw_in", "Bw_out"]].transform("sum"): 这行代码对每个设备组的 'Bw_in' 和 'Bw_out' 列求和。transform("sum") 函数将计算得到的每个组的总和广播回原始 DataFrame,保持与原始 DataFrame 相同的索引。
  3. g[["In", "Out"]].transform("sum").to_numpy(): 这行代码对每个设备组的 'In' 和 'Out' 列求和,然后使用 .to_numpy() 将结果转换为 NumPy 数组。 这是因为 Pandas Series 和 DataFrame 在进行除法运算时,会进行索引对齐。为了避免索引对齐带来的潜在问题,我们将除数转换为 NumPy 数组。
  4. df[["%InUsage", "%OutUsage"]] = ...: 这行代码将计算得到的 %InUsage 和 %OutUsage 添加到原始 DataFrame 中。

输出结果:

  Device   int     In   Out  Bw_in  Bw_out  %InUsage  %OutUsage
0  Usa123  Eth1   1000   500    100      75  0.027273   0.129167
1  Usa123  Eth0  10000   700    200      80  0.027273   0.129167
2  Emea01  Wan1   1000   500    150      90  0.116667   0.106667
3  Emea01  Eth3   2000  1000    200      70  0.116667   0.106667

注意事项

  • 确保用于分组的列(例如,这里的 'Device')包含正确的数据类型。
  • 在进行除法运算时,要处理除数为零的情况,避免出现 ZeroDivisionError。 可以使用 fillna(0) 将 NaN 值替换为 0。
  • 理解 transform() 函数的作用,它将聚合结果广播回原始 DataFrame,这使得我们可以方便地进行后续计算。
  • 使用 .to_numpy() 将 Pandas Series 转换为 NumPy 数组,避免索引对齐问题,提高代码的健壮性。

总结

本文介绍了如何使用 Pandas 的 groupby() 和 transform() 函数对 DataFrame 进行分组聚合,并计算特定列的百分比。通过示例代码和详细解释,展示了如何高效地处理数据,并获得所需的结果。 这种方法避免了使用 apply 函数,从而提高了代码的执行效率。 掌握这些技巧可以帮助你更好地进行数据分析和处理。

相关专题

更多
Python 时间序列分析与预测
Python 时间序列分析与预测

本专题专注讲解 Python 在时间序列数据处理与预测建模中的实战技巧,涵盖时间索引处理、周期性与趋势分解、平稳性检测、ARIMA/SARIMA 模型构建、预测误差评估,以及基于实际业务场景的时间序列项目实操,帮助学习者掌握从数据预处理到模型预测的完整时序分析能力。

51

2025.12.04

数据类型有哪几种
数据类型有哪几种

数据类型有整型、浮点型、字符型、字符串型、布尔型、数组、结构体和枚举等。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

299

2023.10.31

php数据类型
php数据类型

本专题整合了php数据类型相关内容,阅读专题下面的文章了解更多详细内容。

222

2025.10.31

counta和count的区别
counta和count的区别

Count函数用于计算指定范围内数字的个数,而CountA函数用于计算指定范围内非空单元格的个数。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

197

2023.11.20

数据分析的方法
数据分析的方法

数据分析的方法有:对比分析法,分组分析法,预测分析法,漏斗分析法,AB测试分析法,象限分析法,公式拆解法,可行域分析法,二八分析法,假设性分析法。php中文网为大家带来了数据分析的相关知识、以及相关文章等内容。

462

2023.07.04

数据分析方法有哪几种
数据分析方法有哪几种

数据分析方法有:1、描述性统计分析;2、探索性数据分析;3、假设检验;4、回归分析;5、聚类分析。本专题为大家提供数据分析方法的相关的文章、下载、课程内容,供大家免费下载体验。

275

2023.08.07

网站建设功能有哪些
网站建设功能有哪些

网站建设功能包括信息发布、内容管理、用户管理、搜索引擎优化、网站安全、数据分析、网站推广、响应式设计、社交媒体整合和电子商务等功能。这些功能可以帮助网站管理员创建一个具有吸引力、可用性和商业价值的网站,实现网站的目标。

724

2023.10.16

数据分析网站推荐
数据分析网站推荐

数据分析网站推荐:1、商业数据分析论坛;2、人大经济论坛-计量经济学与统计区;3、中国统计论坛;4、数据挖掘学习交流论坛;5、数据分析论坛;6、网站数据分析;7、数据分析;8、数据挖掘研究院;9、S-PLUS、R统计论坛。想了解更多数据分析的相关内容,可以阅读本专题下面的文章。

502

2024.03.13

Java 项目构建与依赖管理(Maven / Gradle)
Java 项目构建与依赖管理(Maven / Gradle)

本专题系统讲解 Java 项目构建与依赖管理的完整体系,重点覆盖 Maven 与 Gradle 的核心概念、项目生命周期、依赖冲突解决、多模块项目管理、构建加速与版本发布规范。通过真实项目结构示例,帮助学习者掌握 从零搭建、维护到发布 Java 工程的标准化流程,提升在实际团队开发中的工程能力与协作效率。

10

2026.01.12

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
Java 教程
Java 教程

共578课时 | 45.2万人学习

国外Web开发全栈课程全集
国外Web开发全栈课程全集

共12课时 | 1.0万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号