0

0

基于 Pandas 的滚动窗口函数高效生成状态标志

花韻仙語

花韻仙語

发布时间:2025-08-20 19:04:01

|

761人浏览过

|

来源于php中文网

原创

基于 pandas 的滚动窗口函数高效生成状态标志

本文将介绍一种使用 Pandas 库中的 groupby.rolling 函数,根据连续时间段内的状态列高效生成标志位的教程。该方法避免了低效的循环操作,特别适用于处理包含大量数据(例如,数百万行)的数据集。通过示例代码和详细解释,读者将能够理解并应用此技术,以优化数据处理流程。

问题背景

在数据分析中,经常需要根据一段时间内的状态变化来标记数据。例如,根据用户在过去 12 个月内的活跃状态来判断其是否为活跃用户。如果使用循环遍历每一行数据,效率会非常低下。本文将介绍如何使用 Pandas 的滚动窗口函数 groupby.rolling 来高效地解决这类问题。

使用 groupby.rolling 函数

groupby.rolling 函数允许我们对分组数据应用滚动窗口计算。结合 max() 函数,可以方便地判断在指定窗口期内是否存在满足条件的状态。

示例数据

假设我们有以下 Pandas DataFrame:

import pandas as pd

data = {'ID': ['A'] * 13,
        'Period': ['2020-10-28', '2020-11-28', '2020-12-28', '2021-01-28', '2021-02-28', '2021-03-28',
                   '2021-04-28', '2021-05-28', '2021-06-28', '2021-07-28', '2021-08-28', '2021-09-28',
                   '2021-10-28'],
        'status': [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]}
df = pd.DataFrame(data)
print(df)

解决方案

以下代码展示了如何使用 groupby.rolling 函数生成标志位:

腾讯混元
腾讯混元

腾讯混元大由腾讯研发的大语言模型,具备强大的中文创作能力、逻辑推理能力,以及可靠的任务执行能力。

下载
import pandas as pd

data = {'ID': ['A'] * 13,
        'Period': ['2020-10-28', '2020-11-28', '2020-12-28', '2021-01-28', '2021-02-28', '2021-03-28',
                   '2021-04-28', '2021-05-28', '2021-06-28', '2021-07-28', '2021-08-28', '2021-09-28',
                   '2021-10-28'],
        'status': [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]}
df = pd.DataFrame(data)

df['Flag'] = (df
      .assign(Period=pd.to_datetime(df['Period']).dt.to_period('M'))
      [::-1]
      .groupby('ID').rolling(12, on='Period', min_periods=1)
      ['status'].max()[::-1].to_numpy()
)

print(df)

代码解释:

  1. df.assign(Period=pd.to_datetime(df['Period']).dt.to_period('M')): 将 'Period' 列转换为 Pandas Period 类型,精度为月。这是使用滚动窗口的必要步骤。
  2. [::-1]: 反转 DataFrame 的顺序。 这是因为我们希望从最早的日期开始计算滚动窗口,以便确定未来 12 个月内是否存在状态为 1 的情况。
  3. groupby('ID').rolling(12, on='Period', min_periods=1): 按 'ID' 列分组,并创建一个滚动窗口,窗口大小为 12 个月。min_periods=1 确保即使窗口内的数据点少于 12 个月,也会进行计算。
  4. ['status'].max(): 计算每个滚动窗口内 'status' 列的最大值。如果窗口内存在任何一个状态为 1,则最大值为 1,否则为 0。
  5. [::-1].to_numpy(): 再次反转结果顺序,使其与原始 DataFrame 的顺序一致,并将结果转换为 NumPy 数组。
  6. df['Flag'] = ...: 将计算得到的标志位赋值给新的 'Flag' 列。

考虑仅前序期间

如果需要仅考虑当前期间之前的期间,可以使用以下代码:

import pandas as pd

data = {'ID': ['A'] * 13,
        'Period': ['2020-10-28', '2020-11-28', '2020-12-28', '2021-01-28', '2021-02-28', '2021-03-28',
                   '2021-04-28', '2021-05-28', '2021-06-28', '2021-07-28', '2021-08-28', '2021-09-28',
                   '2021-10-28'],
        'status': [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]}
df = pd.DataFrame(data)

df['Flag'] = (df
      .assign(Period=pd.to_datetime(df['Period']).dt.to_period('M'))
      .set_index('Period')
      [::-1]
      .groupby('ID')['status']
      .transform(lambda g: g.rolling(12, min_periods=1)
                            .max().shift(fill_value=0)
                 )
      .to_numpy()[::-1]
)

print(df)

代码解释:

  1. .set_index('Period'): 将 'Period' 列设置为索引。
  2. .transform(lambda g: g.rolling(12, min_periods=1).max().shift(fill_value=0)): 使用 transform 函数对每个分组应用滚动窗口计算。shift(fill_value=0) 将结果向下移动一位,并用 0 填充缺失值,从而确保仅考虑前序期间。

总结

使用 Pandas 的 groupby.rolling 函数可以高效地生成基于连续时间段的状态标志。这种方法避免了低效的循环操作,特别适用于处理大规模数据集。通过将时间列转换为 Period 类型,并结合 max() 和 shift() 函数,可以灵活地实现各种状态标志的生成需求。在实际应用中,可以根据具体情况调整窗口大小和计算逻辑,以满足不同的业务需求。

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
Python 时间序列分析与预测
Python 时间序列分析与预测

本专题专注讲解 Python 在时间序列数据处理与预测建模中的实战技巧,涵盖时间索引处理、周期性与趋势分解、平稳性检测、ARIMA/SARIMA 模型构建、预测误差评估,以及基于实际业务场景的时间序列项目实操,帮助学习者掌握从数据预处理到模型预测的完整时序分析能力。

49

2025.12.04

lambda表达式
lambda表达式

Lambda表达式是一种匿名函数的简洁表示方式,它可以在需要函数作为参数的地方使用,并提供了一种更简洁、更灵活的编码方式,其语法为“lambda 参数列表: 表达式”,参数列表是函数的参数,可以包含一个或多个参数,用逗号分隔,表达式是函数的执行体,用于定义函数的具体操作。本专题为大家提供lambda表达式相关的文章、下载、课程内容,供大家免费下载体验。

202

2023.09.15

python lambda函数
python lambda函数

本专题整合了python lambda函数用法详解,阅读专题下面的文章了解更多详细内容。

187

2025.11.08

数据分析的方法
数据分析的方法

数据分析的方法有:对比分析法,分组分析法,预测分析法,漏斗分析法,AB测试分析法,象限分析法,公式拆解法,可行域分析法,二八分析法,假设性分析法。php中文网为大家带来了数据分析的相关知识、以及相关文章等内容。

447

2023.07.04

数据分析方法有哪几种
数据分析方法有哪几种

数据分析方法有:1、描述性统计分析;2、探索性数据分析;3、假设检验;4、回归分析;5、聚类分析。本专题为大家提供数据分析方法的相关的文章、下载、课程内容,供大家免费下载体验。

261

2023.08.07

网站建设功能有哪些
网站建设功能有哪些

网站建设功能包括信息发布、内容管理、用户管理、搜索引擎优化、网站安全、数据分析、网站推广、响应式设计、社交媒体整合和电子商务等功能。这些功能可以帮助网站管理员创建一个具有吸引力、可用性和商业价值的网站,实现网站的目标。

718

2023.10.16

数据分析网站推荐
数据分析网站推荐

数据分析网站推荐:1、商业数据分析论坛;2、人大经济论坛-计量经济学与统计区;3、中国统计论坛;4、数据挖掘学习交流论坛;5、数据分析论坛;6、网站数据分析;7、数据分析;8、数据挖掘研究院;9、S-PLUS、R统计论坛。想了解更多数据分析的相关内容,可以阅读本专题下面的文章。

498

2024.03.13

Python 数据分析处理
Python 数据分析处理

本专题聚焦 Python 在数据分析领域的应用,系统讲解 Pandas、NumPy 的数据清洗、处理、分析与统计方法,并结合数据可视化、销售分析、科研数据处理等实战案例,帮助学员掌握使用 Python 高效进行数据分析与决策支持的核心技能。

71

2025.09.08

ip地址修改教程大全
ip地址修改教程大全

本专题整合了ip地址修改教程大全,阅读下面的文章自行寻找合适的解决教程。

27

2025.12.26

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号