0

0

基于 Pandas Rolling 函数高效生成状态标志

花韻仙語

花韻仙語

发布时间:2025-08-20 18:44:01

|

482人浏览过

|

来源于php中文网

原创

基于 pandas rolling 函数高效生成状态标志

本文旨在提供一种利用 Pandas 的 groupby.rolling 函数,根据连续12个周期内的状态列生成标志位的高效方法。相比于传统的循环方法,该方法能够显著提升处理大数据集时的性能。文章将详细介绍两种实现方案,分别考虑了未来周期和过去周期的状态,并提供相应的代码示例和解释。

利用 Pandas Rolling 函数生成状态标志

在数据分析中,经常需要根据时间序列数据中的状态变化生成标志位。例如,我们需要根据连续12个月的状态来标记特定月份。如果使用传统的循环方法,处理大数据集时效率会非常低。Pandas 提供了 groupby.rolling 函数,可以高效地实现此类需求。

方法一:考虑未来周期的状态

以下代码展示了如何使用 groupby.rolling 函数,基于未来12个月的状态列生成标志位。

import pandas as pd

# 示例数据
data = {'ID': ['A'] * 13,
        'Period': ['2020-10-28', '2020-11-28', '2020-12-28', '2021-01-28', '2021-02-28',
                   '2021-03-28', '2021-04-28', '2021-05-28', '2021-06-28', '2021-07-28',
                   '2021-08-28', '2021-09-28', '2021-10-28'],
        'status': [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]}
df = pd.DataFrame(data)

df['Flag'] = (df
      .assign(Period=pd.to_datetime(df['Period']).dt.to_period('M'))
      [::-1]
      .groupby('ID').rolling(12, on='Period', min_periods=1)
      ['status'].max()[::-1].to_numpy()
)

print(df)

代码解释:

  1. df.assign(Period=pd.to_datetime(df['Period']).dt.to_period('M')): 将 'Period' 列转换为 Pandas Period 类型,精度为月。这是使用 rolling 函数的关键,因为它需要一个可以进行滚动计算的索引。
  2. [::-1]: 反转 DataFrame 的顺序。这是因为我们需要从未来周期开始计算。
  3. groupby('ID').rolling(12, on='Period', min_periods=1)['status'].max():
    • groupby('ID'): 按 'ID' 列进行分组。
    • rolling(12, on='Period', min_periods=1): 创建一个滚动窗口,窗口大小为 12 个月。on='Period' 指定滚动计算基于 'Period' 列。min_periods=1 表示即使窗口内的数据少于 12 个月,也进行计算。
    • ['status'].max(): 计算滚动窗口内 'status' 列的最大值。如果窗口内存在任何一个 'status' 为 1,则结果为 1,否则为 0。
  4. [::-1].to_numpy(): 再次反转结果,使其与原始 DataFrame 的顺序一致,并将结果转换为 NumPy 数组。
  5. df['Flag'] = ...: 将计算结果赋值给新的 'Flag' 列。

方法二:仅考虑过去周期的状态

如果需要仅考虑过去12个月的状态,可以使用以下代码:

LongShot
LongShot

LongShot 是一款 AI 写作助手,可帮助您生成针对搜索引擎优化的内容博客。

下载
import pandas as pd

# 示例数据
data = {'ID': ['A'] * 13,
        'Period': ['2020-10-28', '2020-11-28', '2020-12-28', '2021-01-28', '2021-02-28',
                   '2021-03-28', '2021-04-28', '2021-05-28', '2021-06-28', '2021-07-28',
                   '2021-08-28', '2021-09-28', '2021-10-28'],
        'status': [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]}
df = pd.DataFrame(data)

df['Flag'] = (df
      .assign(Period=pd.to_datetime(df['Period']).dt.to_period('M'))
      .set_index('Period')
      [::-1]
      .groupby('ID')['status']
      .transform(lambda g: g.rolling(12, min_periods=1)
                            .max().shift(fill_value=0)
                 )
      .to_numpy()[::-1]
)

print(df)

代码解释:

  1. df.assign(Period=pd.to_datetime(df['Period']).dt.to_period('M')): 将 'Period' 列转换为 Pandas Period 类型,精度为月。
  2. .set_index('Period'): 将'Period'列设置为索引,以便进行滚动计算。
  3. [::-1]: 反转 DataFrame 的顺序。
  4. groupby('ID')['status'].transform(lambda g: g.rolling(12, min_periods=1).max().shift(fill_value=0)):
    • groupby('ID'): 按 'ID' 列进行分组。
    • ['status']: 选择'status'列。
    • transform(lambda g: ...): 对每个分组应用一个函数。
    • g.rolling(12, min_periods=1).max(): 计算滚动窗口内 'status' 列的最大值。
    • .shift(fill_value=0): 将结果向下移动一位,并用 0 填充缺失值。 shift() 函数是关键,它确保我们只考虑过去的周期。
  5. .to_numpy()[::-1]: 将结果转换为 NumPy 数组并反转顺序。
  6. df['Flag'] = ...: 将计算结果赋值给新的 'Flag' 列。

注意事项:

  • 确保 'Period' 列的数据类型正确,需要转换为 Pandas Period 类型。
  • 根据实际需求选择合适的滚动窗口大小和 min_periods 参数。
  • 理解 shift() 函数的作用,它可以控制是否考虑未来周期的状态。

总结:

使用 Pandas 的 groupby.rolling 函数可以高效地根据连续周期内的状态列生成标志位。 相比于循环方法,这种方法能够显著提升处理大数据集时的性能。 通过调整参数和使用 shift() 函数,可以灵活地满足不同的需求。

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
Python 时间序列分析与预测
Python 时间序列分析与预测

本专题专注讲解 Python 在时间序列数据处理与预测建模中的实战技巧,涵盖时间索引处理、周期性与趋势分解、平稳性检测、ARIMA/SARIMA 模型构建、预测误差评估,以及基于实际业务场景的时间序列项目实操,帮助学习者掌握从数据预处理到模型预测的完整时序分析能力。

49

2025.12.04

数据类型有哪几种
数据类型有哪几种

数据类型有整型、浮点型、字符型、字符串型、布尔型、数组、结构体和枚举等。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

295

2023.10.31

php数据类型
php数据类型

本专题整合了php数据类型相关内容,阅读专题下面的文章了解更多详细内容。

216

2025.10.31

lambda表达式
lambda表达式

Lambda表达式是一种匿名函数的简洁表示方式,它可以在需要函数作为参数的地方使用,并提供了一种更简洁、更灵活的编码方式,其语法为“lambda 参数列表: 表达式”,参数列表是函数的参数,可以包含一个或多个参数,用逗号分隔,表达式是函数的执行体,用于定义函数的具体操作。本专题为大家提供lambda表达式相关的文章、下载、课程内容,供大家免费下载体验。

202

2023.09.15

python lambda函数
python lambda函数

本专题整合了python lambda函数用法详解,阅读专题下面的文章了解更多详细内容。

187

2025.11.08

数据分析的方法
数据分析的方法

数据分析的方法有:对比分析法,分组分析法,预测分析法,漏斗分析法,AB测试分析法,象限分析法,公式拆解法,可行域分析法,二八分析法,假设性分析法。php中文网为大家带来了数据分析的相关知识、以及相关文章等内容。

447

2023.07.04

数据分析方法有哪几种
数据分析方法有哪几种

数据分析方法有:1、描述性统计分析;2、探索性数据分析;3、假设检验;4、回归分析;5、聚类分析。本专题为大家提供数据分析方法的相关的文章、下载、课程内容,供大家免费下载体验。

261

2023.08.07

网站建设功能有哪些
网站建设功能有哪些

网站建设功能包括信息发布、内容管理、用户管理、搜索引擎优化、网站安全、数据分析、网站推广、响应式设计、社交媒体整合和电子商务等功能。这些功能可以帮助网站管理员创建一个具有吸引力、可用性和商业价值的网站,实现网站的目标。

718

2023.10.16

ip地址修改教程大全
ip地址修改教程大全

本专题整合了ip地址修改教程大全,阅读下面的文章自行寻找合适的解决教程。

27

2025.12.26

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号