0

0

使用 PySpark 从 JSON 对象中选择并透视数据

霞舞

霞舞

发布时间:2025-08-19 15:22:01

|

179人浏览过

|

来源于php中文网

原创

使用 pyspark 从 json 对象中选择并透视数据

本文档介绍了如何使用 PySpark 从包含属性和值的 JSON 对象中提取特定列,并将其透视为所需格式。通过创建 DataFrame 和使用 Spark SQL,我们可以灵活地选择和转换数据,最终得到以指定属性名作为列名的结果。本文提供详细步骤和示例代码,帮助你轻松完成数据提取和转换任务。

使用 PySpark 处理 JSON 数据并进行透视

在数据处理中,经常需要从 JSON 数据中提取特定字段,并将其转换为更易于分析的格式。当 JSON 数据包含具有属性和值的对象数组时,例如 Oracle REST API 的响应,我们可以使用 PySpark 来选择所需的列,并将其透视为以属性名作为列名的形式。

以下是如何使用 PySpark 实现此目标的步骤:

1. 创建 DataFrame

首先,你需要使用 JSON 数据创建一个 DataFrame。假设你已经将 JSON 数据存储在变量 json_data 中,可以使用以下代码创建 DataFrame:

from pyspark.sql import SparkSession

# 创建 SparkSession
spark = SparkSession.builder.appName("JSONPivot").getOrCreate()

df = spark.read.json(spark.sparkContext.parallelize([json_data]))

# 示例 JSON 数据 (替换为你实际的数据)
json_data = """
[
    {
        "attributeId": 300000000227671,
        "attributeName": "BUSINESS_UNIT",
        "attributeType": "Number",
        "attributeValue": "300000207138371",
        "timeBuildingBlockId": 300000300319699,
        "timeBuildingBlockVersion": 1
    },
    {
        "attributeId": 300000000227689,
        "attributeName": "LOG_ID",
        "attributeType": "Number",
        "attributeValue": "300000001228038",
        "timeBuildingBlockId": 300000300319699,
        "timeBuildingBlockVersion": 1
    }
]
"""

df = spark.read.json(spark.sparkContext.parallelize([json_data]))

df.printSchema()
df.show()

这段代码首先创建了一个 SparkSession,这是与 Spark 集群交互的入口点。然后,它使用 spark.read.json() 方法从 json_data 读取 JSON 数据,并将其转换为 DataFrame。spark.sparkContext.parallelize([json_data]) 用于将 JSON 数据转换为 RDD,然后 spark.read.json() 可以从 RDD 读取数据。 df.printSchema() 打印 DataFrame 的结构,df.show() 显示 DataFrame 的内容。

2. 创建临时视图

为了能够使用 Spark SQL 查询 DataFrame,需要创建一个临时视图:

df.createOrReplaceTempView("myTable")

这将创建一个名为 "myTable" 的临时视图,你可以使用 Spark SQL 查询它。

Copilot
Copilot

Copilot是由微软公司开发的一款AI生产力工具,旨在通过先进的人工智能技术,帮助用户快速完成各种任务,提升工作效率。

下载

3. 使用 Spark SQL 进行透视

现在,可以使用 Spark SQL 查询临时视图,以提取所需的列并进行透视。以下是一个示例查询,用于提取 "LOG_ID" 和 "BUSINESS_UNIT" 的 attributeValue:

result = spark.sql("""
    SELECT
        MAX(CASE WHEN attributeName = 'LOG_ID' THEN attributeValue END) AS LOG_ID,
        MAX(CASE WHEN attributeName = 'BUSINESS_UNIT' THEN attributeValue END) AS BUSINESS_UNIT
    FROM myTable
""")

result.show()

这个 SQL 查询使用 CASE WHEN 语句来根据 attributeName 的值选择相应的 attributeValue。 MAX() 函数用于处理可能存在多个具有相同 attributeName 的情况,并确保每个属性只有一个值。AS 关键字用于为结果列指定别名。

完整代码示例

from pyspark.sql import SparkSession

# 创建 SparkSession
spark = SparkSession.builder.appName("JSONPivot").getOrCreate()

# 示例 JSON 数据 (替换为你实际的数据)
json_data = """
[
    {
        "attributeId": 300000000227671,
        "attributeName": "BUSINESS_UNIT",
        "attributeType": "Number",
        "attributeValue": "300000207138371",
        "timeBuildingBlockId": 300000300319699,
        "timeBuildingBlockVersion": 1
    },
    {
        "attributeId": 300000000227689,
        "attributeName": "LOG_ID",
        "attributeType": "Number",
        "attributeValue": "300000001228038",
        "timeBuildingBlockId": 300000300319699,
        "timeBuildingBlockVersion": 1
    }
]
"""

# 创建 DataFrame
df = spark.read.json(spark.sparkContext.parallelize([json_data]))

# 创建临时视图
df.createOrReplaceTempView("myTable")

# 使用 Spark SQL 进行透视
result = spark.sql("""
    SELECT
        MAX(CASE WHEN attributeName = 'LOG_ID' THEN attributeValue END) AS LOG_ID,
        MAX(CASE WHEN attributeName = 'BUSINESS_UNIT' THEN attributeValue END) AS BUSINESS_UNIT
    FROM myTable
""")

# 显示结果
result.show()

# 停止 SparkSession
spark.stop()

注意事项

  • 确保你的 JSON 数据格式正确,并且包含所需的 attributeName 和 attributeValue 字段。
  • 根据你的实际需求修改 SQL 查询,以提取所需的列和进行透视。
  • 如果 JSON 数据非常大,可以考虑使用分区来提高查询性能。
  • 在实际应用中,可能需要处理缺失值或错误数据。可以使用 fillna() 或 filter() 方法来处理这些情况。
  • 记得在完成操作后停止 SparkSession,释放资源。

总结

通过使用 PySpark 创建 DataFrame 和使用 Spark SQL,我们可以轻松地从 JSON 对象中选择和透视数据。这种方法非常灵活,可以根据你的实际需求进行定制。希望本文档能够帮助你解决数据提取和转换问题。

相关专题

更多
数据分析工具有哪些
数据分析工具有哪些

数据分析工具有Excel、SQL、Python、R、Tableau、Power BI、SAS、SPSS和MATLAB等。详细介绍:1、Excel,具有强大的计算和数据处理功能;2、SQL,可以进行数据查询、过滤、排序、聚合等操作;3、Python,拥有丰富的数据分析库;4、R,拥有丰富的统计分析库和图形库;5、Tableau,提供了直观易用的用户界面等等。

674

2023.10.12

SQL中distinct的用法
SQL中distinct的用法

SQL中distinct的语法是“SELECT DISTINCT column1, column2,...,FROM table_name;”。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

319

2023.10.27

SQL中months_between使用方法
SQL中months_between使用方法

在SQL中,MONTHS_BETWEEN 是一个常见的函数,用于计算两个日期之间的月份差。想了解更多SQL的相关内容,可以阅读本专题下面的文章。

345

2024.02.23

SQL出现5120错误解决方法
SQL出现5120错误解决方法

SQL Server错误5120是由于没有足够的权限来访问或操作指定的数据库或文件引起的。想了解更多sql错误的相关内容,可以阅读本专题下面的文章。

1084

2024.03.06

sql procedure语法错误解决方法
sql procedure语法错误解决方法

sql procedure语法错误解决办法:1、仔细检查错误消息;2、检查语法规则;3、检查括号和引号;4、检查变量和参数;5、检查关键字和函数;6、逐步调试;7、参考文档和示例。想了解更多语法错误的相关内容,可以阅读本专题下面的文章。

355

2024.03.06

oracle数据库运行sql方法
oracle数据库运行sql方法

运行sql步骤包括:打开sql plus工具并连接到数据库。在提示符下输入sql语句。按enter键运行该语句。查看结果,错误消息或退出sql plus。想了解更多oracle数据库的相关内容,可以阅读本专题下面的文章。

671

2024.04.07

sql中where的含义
sql中where的含义

sql中where子句用于从表中过滤数据,它基于指定条件选择特定的行。想了解更多where的相关内容,可以阅读本专题下面的文章。

564

2024.04.29

sql中删除表的语句是什么
sql中删除表的语句是什么

sql中用于删除表的语句是drop table。语法为drop table table_name;该语句将永久删除指定表的表和数据。想了解更多sql的相关内容,可以阅读本专题下面的文章。

408

2024.04.29

桌面文件位置介绍
桌面文件位置介绍

本专题整合了桌面文件相关教程,阅读专题下面的文章了解更多内容。

0

2025.12.30

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
SQL 教程
SQL 教程

共61课时 | 3.2万人学习

Java 教程
Java 教程

共578课时 | 39.3万人学习

oracle知识库
oracle知识库

共0课时 | 0人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号