0

0

Python怎样操作Parquet文件?pyarrow高效读写

看不見的法師

看不見的法師

发布时间:2025-08-13 19:36:02

|

923人浏览过

|

来源于php中文网

原创

最核心且高效的工具是pyarrow库,1. 使用pyarrow可将pandas dataframe转换为table对象并写入parquet文件;2. 通过pq.read_table读取数据,支持列筛选和高效过滤;3. parquet采用列式存储,相比csv或json能大幅减少i/o开销,提升查询效率,尤其适合大数据场景下的高性能数据处理。

Python怎样操作Parquet文件?pyarrow高效读写

Python操作Parquet文件,最核心且高效的工具就是

pyarrow
库。它不仅提供了与底层Apache Arrow C++库无缝对接的性能优势,还能让你以非常灵活的方式处理各种数据结构,无论是简单的表格数据还是复杂的嵌套类型。可以说,在Python的数据生态里,
pyarrow
是处理Parquet文件的首选。

要用

pyarrow
读写Parquet文件,基本流程其实挺直观的。

先说写。通常,我们会把数据转换成

pyarrow.Table
对象。这玩意儿就像一个内存中的表格,包含了列名、数据类型以及实际的数据。

立即学习Python免费学习笔记(深入)”;

import pyarrow as pa
import pyarrow.parquet as pq
import pandas as pd
import numpy as np

# 假设我们有一些数据,可以是Pandas DataFrame
data = {
    'id': [1, 2, 3, 4],
    'name': ['Alice', 'Bob', 'Charlie', 'David'],
    'value': [10.5, 20.1, 15.0, 25.8],
    'timestamp': pd.to_datetime(['2023-01-01', '2023-01-02', '2023-01-03', '2023-01-04'])
}
df = pd.DataFrame(data)

# 将Pandas DataFrame转换为pyarrow Table
# 这一步很关键,pyarrow会自动推断Pandas的类型到Arrow类型
table = pa.Table.from_pandas(df)

# 写入Parquet文件
# 这里可以指定压缩方式,比如'snappy'、'gzip'、'brotli'、'zstd'
# 'snappy'通常是性能和压缩比的良好平衡
pq.write_table(table, 'my_data.parquet', compression='snappy')
print("数据已成功写入 my_data.parquet")

# 如果想分块写入,或者处理非常大的文件,可以考虑ParquetWriter
# with pq.ParquetWriter('large_data.parquet', table.schema) as writer:
#     writer.write_table(table_chunk_1)
#     writer.write_table(table_chunk_2)
#     # ... 这种方式适合流式写入,但对大多数日常使用,直接write_table更方便

再来看读。读Parquet文件同样简单,

pyarrow
会把文件内容加载成一个
pyarrow.Table
对象。

SlidesAI
SlidesAI

使用SlidesAI的AI在几秒钟内创建演示文稿幻灯片

下载
# 从Parquet文件读取数据
read_table = pq.read_table('my_data.parquet')
print("\n从Parquet文件读取的数据:")
print(read_table)

# 如果想转回Pandas DataFrame,也很方便
read_df = read_table.to_pandas()
print("\n转换回Pandas DataFrame:")
print(read_df)

# 有时候你可能只想要读取部分列,或者根据条件过滤行,pyarrow也支持
# 比如,只读取 'name' 和 'value' 列
partial_table = pq.read_table('my_data.parquet', columns=['name', 'value'])
print("\n只读取部分列的数据:")
print(partial_table)

# 甚至可以利用Parquet的列式存储特性进行高效过滤(下推谓词)
# 不过,这需要文件本身有统计信息,并且查询条件能被Parquet引擎理解
# read_table_filtered = pq.read_table('my_data.parquet', filters=[('value', '>', 20)])
# print("\n过滤后的数据:")
# print(read_table_filtered)

这里有个小细节,

pq.read_table
在读取时,如果Parquet文件很大,它不会一次性把所有数据都加载到内存。它会做一些优化,比如只加载你需要的列,或者在你遍历时才真正读取数据块。这是它高效的一个体现。

为什么选择Parquet格式?它比CSV或JSON有什么优势?

我个人觉得,选择Parquet,很大程度上是看中了它在大数据场景下的性能和效率。跟CSV或JSON比起来,它简直是降维打击。

Parquet首先是列式存储。这意味着什么呢?想象一下你的数据像一张大表格。CSV和JSON是按行存的,你要读取一行,就把这一行的所有数据都读出来。但Parquet不一样,它把同一列的数据紧挨着存放在一起。这样一来,如果你只需要查询几列数据(比如只看用户ID和姓名,不关心地址、电话),Parquet就只需要读取那几列的数据块,而不是整行数据。这在处理宽表时,能显著减少I/O开销,速度快得不是一点半点。

Parquet内置了**高效的

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

715

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

625

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

739

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1235

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

575

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

698

2023.08.11

桌面文件位置介绍
桌面文件位置介绍

本专题整合了桌面文件相关教程,阅读专题下面的文章了解更多内容。

0

2025.12.30

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.6万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.0万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号