0

0

快速排序是什么?快速排序的JS实现

畫卷琴夢

畫卷琴夢

发布时间:2025-08-12 15:16:01

|

535人浏览过

|

来源于php中文网

原创

快速排序的工作原理是基于“分而治之”策略,通过选择基准、分区和递归排序三个步骤实现高效排序:首先从数组中选择一个基准元素,然后将数组划分为两部分,左边为小于基准的元素,右边为大于或等于基准的元素,此时基准位于最终有序位置;接着对左右两个子数组递归执行相同操作,直到子数组长度小于等于1,整个数组即有序。该算法平均时间复杂度为o(n log n),最坏情况下为o(n²),空间复杂度平均为o(log n);常见优化包括随机或三数取中法选择基准、小规模数据切换插入排序、三路分区处理重复元素以及尾递归或迭代实现以降低栈深度,从而提升整体性能和稳定性。

快速排序是什么?快速排序的JS实现

快速排序,说白了,就是一种非常高效的排序算法。它的核心思想是“分而治之”:你先从数组里挑一个元素,叫它“基准”(pivot),然后把数组里所有比基准小的元素都挪到基准的左边,比基准大的挪到右边。这样一来,基准就到了它最终该待的位置。接下来,你只要对基准左右两边的子数组重复这个过程,直到所有元素都归位,整个数组也就排好序了。它快就快在,每一步都能把问题规模缩小一大截。

/**
 * 快速排序的JavaScript实现
 *
 * @param {Array} arr - 需要排序的数组
 * @returns {Array} 排序后的数组
 */
function quickSort(arr) {
    // 递归的终止条件:如果数组为空或只有一个元素,它已经是排序好的
    if (arr.length <= 1) {
        return arr;
    }

    // 选择一个基准元素。这里我习惯选择数组的最后一个元素作为基准,
    // 但其实选择中间的、第一个的,甚至是随机的都可以,各有优缺点。
    const pivot = arr[arr.length - 1];
    // 移除基准元素,因为我们后续要把它插入到正确的位置
    const remainingArr = arr.slice(0, arr.length - 1);

    // 两个空数组,用来存放比基准小的和比基准大的元素
    const left = [];
    const right = [];

    // 遍历剩余的数组,将元素分配到左右两边
    for (let i = 0; i < remainingArr.length; i++) {
        if (remainingArr[i] < pivot) {
            left.push(remainingArr[i]);
        } else {
            // 这里包含了等于基准的元素,通常放在右边,也可以单独处理
            right.push(remainingArr[i]);
        }
    }

    // 递归地对左右两边的子数组进行排序,然后将它们、基准、以及右边排序后的结果拼接起来
    // 这种实现方式虽然直观,但在内存消耗上可能不如原地交换的实现。
    return [...quickSort(left), pivot, ...quickSort(right)];
}

// 示例用法:
// const unsortedArray = [3, 6, 8, 10, 1, 2, 1];
// const sortedArray = quickSort(unsortedArray);
// console.log(sortedArray); // 输出: [1, 1, 2, 3, 6, 8, 10]

// 注意:上述实现是“非原地”的,因为它创建了新的数组。
// 实际生产环境中,为了性能和内存效率,更常见的是“原地”交换元素的实现,
// 那会涉及更多的指针操作和数组元素的直接交换。
// 例如:
/*
function quickSortInPlace(arr, low, high) {
    if (low < high) {
        let pi = partition(arr, low, high);
        quickSortInPlace(arr, low, pi - 1);
        quickSortInPlace(arr, pi + 1, high);
    }
}

function partition(arr, low, high) {
    let pivot = arr[high];
    let i = (low - 1); // Index of smaller element

    for (let j = low; j < high; j++) {
        if (arr[j] < pivot) {
            i++;
            [arr[i], arr[j]] = [arr[j], arr[i]]; // Swap
        }
    }
    [arr[i + 1], arr[high]] = [arr[high], arr[i + 1]]; // Swap pivot
    return i + 1;
}

// 调用示例:
// const unsortedArrayInPlace = [3, 6, 8, 10, 1, 2, 1];
// quickSortInPlace(unsortedArrayInPlace, 0, unsortedArrayInPlace.length - 1);
// console.log(unsortedArrayInPlace); // 输出: [1, 1, 2, 3, 6, 8, 10]
*/

快速排序的工作原理是怎样的?

快速排序的“分而治之”策略,在我看来,是它最迷人的地方。它不像某些排序算法那样一步一个脚印地比较和交换,而是有点像一场递归的“分治战争”。一开始,你面对的是一个大乱斗的数组,你的任务是把它整理好。

这个过程通常分为三步:

  1. 选择基准(Pivot Selection): 这是第一步,也是很关键的一步。你需要从数组中挑一个元素作为“基准”。基准的选择方式有很多种,比如选第一个、最后一个、中间的,甚至随机选一个。不同的选择策略会对算法的性能产生影响,尤其是在处理特定输入(比如已经部分有序的数组)时。我个人在实现时,如果不是特别追求极致性能或处理特定数据,通常会选择最后一个元素,因为它比较直观。

  2. 分区(Partitioning): 选定基准后,下一步就是把数组分成两部分。所有比基准小的元素都放到基准的左边,所有比基准大的元素都放到基准的右边。这个过程完成后,基准元素就“归位”了,它现在所在的位置就是它在最终排序数组中的位置。这一步是快速排序的灵魂所在,它通过一系列的元素交换来完成,确保基准两侧的元素满足大小关系。想象一下,你把一堆大小不一的石头,按照某个标准(基准)分成两堆,小的放一边,大的放另一边,基准石子就放在中间。

  3. 递归排序(Recursive Sort): 完成分区后,基准左右两边的子数组还是无序的。但好消息是,它们现在是独立的、更小的排序问题了。所以,快速排序会对自己左右两边的子数组重复执行上述的“选择基准”和“分区”操作,直到子数组的长度变得非常小(比如只剩一个元素或为空),这时它们自然就是有序的。这种递归调用,一层层地把问题分解,再一层层地合并结果,最终就得到了一个完全有序的数组。

快速排序的性能表现如何?

谈到性能,快速排序绝对是排序算法中的明星选手,但它也有自己的“脾气”。它的性能表现,用大O表示法来说,平均情况和最好情况都是 O(n log n)。这意味着,当处理的数据量 n 增大时,它的运行时间增长得相对缓慢,非常高效。

  • 时间复杂度:

    PHPB2B
    PHPB2B

    PHP-B2B(原友邻b2b)是一套能够帮助用户,快速建立高效、多功能电子商务网站的php应用程序,本程序采用目前互联网上最流行的LAMP组合(Linux+Apache+Mysql+PHP)开发完成,同时利用Smarty模板技术实现了网站前台与后台的有效分离,用户可以快速地在此基础上开发自己的模板。 友邻php提供了电子商务应用最常见求购、供应、商品、公司库等模块,同时为企业用户提供了一个发布信

    下载
    • 平均情况:O(n log n)。 为什么是 n log n 呢?每次分区操作,我们都会遍历一次当前子数组的所有元素(O(n)),然后把问题规模大致减半。这种“分而治之”的模式,很自然地就导向了 log n 的层级。所以,总的来说就是 n 乘以 log n。在实际应用中,快速排序的常数因子通常很小,这让它在大多数情况下表现得比其他 O(n log n) 的算法(如归并排序)更快。
    • 最好情况:O(n log n)。 当每次分区都能把数组完美地一分为二时(比如基准总是选中了中位数),就达到了最好情况。
    • 最坏情况:O(n²)。 这是快速排序的“阿喀琉斯之踵”。如果每次都选到了一个极端值作为基准(比如数组已经完全有序,或者完全逆序,而你总是选第一个或最后一个),那么每次分区都只会把一个元素放到正确位置,而另一个子数组的长度只减少了1。这样一来,你就相当于做了 n 次 O(n) 的操作,总时间复杂度就退化成了 O(n²),跟冒泡排序差不多了。这种情况下,它的效率会变得非常低。
  • 空间复杂度:

    • 平均情况:O(log n)。 这主要是因为递归调用栈的开销。每次递归都会在调用栈上压入一个帧,而分治的深度是 log n。
    • 最坏情况:O(n)。 如果不幸遇到了最坏时间复杂度的情况(比如每次分区都只分出一个元素),那么递归深度就会达到 n,导致调用栈的开销也达到 O(n)。

虽然最坏情况 O(n²) 听起来有点吓人,但在实际应用中,通过一些优化技巧(比如随机选择基准、三数取中等),以及现代编程语言运行时对递归的优化,快速排序很少会退化到最坏情况。它依然是许多标准库中默认的排序算法,或者作为其他高级排序算法(如混合排序)的组成部分。

快速排序有哪些常见的优化技巧?

快速排序虽然很快,但它并非没有提升空间。针对它的一些“弱点”,比如最坏情况的性能,或者递归深度,社区里发展出了一些非常实用的优化策略。

  1. 优化基准选择(Pivot Selection):

    • 随机选择基准: 这是最常用也最有效的优化之一。不是固定选择第一个或最后一个元素,而是从当前子数组中随机挑选一个元素作为基准。这样大大降低了遇到最坏情况的概率,因为随机性使得任何特定输入序列都很难持续导致最坏行为。
    • 三数取中法(Median-of-Three): 这种方法通常是选择子数组的第一个、中间和最后一个元素,然后取这三个数的中位数作为基准。这样做的好处是,选到极端值的概率比随机选择更低,从而减少了遇到最坏情况的可能性,同时也不会引入太大的额外计算开销。我个人很喜欢这种方法,因为它兼顾了性能和稳定性。
  2. 处理小规模子数组:

    • 当递归到子数组的长度非常小(比如小于10或20个元素,这个阈值需要根据实际测试来确定)时,快速排序的效率其实并不高,因为递归调用的开销相对于排序本身的工作量来说变得显著。
    • 一个常见的优化是,当子数组长度小于某个阈值时,不再递归调用快速排序,而是切换到其他更适合小规模数据的排序算法,比如插入排序(Insertion Sort)。插入排序在处理小规模、接近有序的数据时表现非常出色,并且它的常数因子很小。这种混合排序策略,能有效提升整体性能。
  3. 尾递归优化(Tail Recursion Optimization):

    • 在一些支持尾递归优化的语言(比如某些函数式语言)中,如果快速排序的递归调用是尾调用,编译器或解释器可以将其优化为迭代,从而避免了过深的递归栈。虽然JavaScript引擎在某些情况下可能会对尾调用进行优化,但并不能完全依赖它来避免所有递归深度问题。
    • 如果需要完全避免递归栈溢出,可以考虑将快速排序改写为迭代版本,通过手动维护一个栈来模拟递归过程。这会增加代码的复杂性,但在对内存和栈深度有严格要求的场景下非常有用。
  4. 优化分区过程(Partitioning):

    • 处理相等元素: 原始的快速排序在处理大量重复元素时,效率会下降。如果所有元素都相等,它仍然会退化到 O(n²) 的情况。一种优化是,在分区时,将与基准相等的元素单独放在基准的中间,形成三路分区(Dutch National Flag Problem)。这样,下一次递归就只需要处理比基准小和比基准大的两个子数组,而跳过了相等的元素,从而显著提高了处理重复元素时的效率。

这些优化并非孤立存在,很多时候它们会结合使用,共同提升快速排序在各种场景下的表现。

相关专题

更多
js获取数组长度的方法
js获取数组长度的方法

在js中,可以利用array对象的length属性来获取数组长度,该属性可设置或返回数组中元素的数目,只需要使用“array.length”语句即可返回表示数组对象的元素个数的数值,也就是长度值。php中文网还提供JavaScript数组的相关下载、相关课程等内容,供大家免费下载使用。

537

2023.06.20

js刷新当前页面
js刷新当前页面

js刷新当前页面的方法:1、reload方法,该方法强迫浏览器刷新当前页面,语法为“location.reload([bForceGet]) ”;2、replace方法,该方法通过指定URL替换当前缓存在历史里(客户端)的项目,因此当使用replace方法之后,不能通过“前进”和“后退”来访问已经被替换的URL,语法为“location.replace(URL) ”。php中文网为大家带来了js刷新当前页面的相关知识、以及相关文章等内容

372

2023.07.04

js四舍五入
js四舍五入

js四舍五入的方法:1、tofixed方法,可把 Number 四舍五入为指定小数位数的数字;2、round() 方法,可把一个数字舍入为最接近的整数。php中文网为大家带来了js四舍五入的相关知识、以及相关文章等内容

727

2023.07.04

js删除节点的方法
js删除节点的方法

js删除节点的方法有:1、removeChild()方法,用于从父节点中移除指定的子节点,它需要两个参数,第一个参数是要删除的子节点,第二个参数是父节点;2、parentNode.removeChild()方法,可以直接通过父节点调用来删除子节点;3、remove()方法,可以直接删除节点,而无需指定父节点;4、innerHTML属性,用于删除节点的内容。

470

2023.09.01

JavaScript转义字符
JavaScript转义字符

JavaScript中的转义字符是反斜杠和引号,可以在字符串中表示特殊字符或改变字符的含义。本专题为大家提供转义字符相关的文章、下载、课程内容,供大家免费下载体验。

388

2023.09.04

js生成随机数的方法
js生成随机数的方法

js生成随机数的方法有:1、使用random函数生成0-1之间的随机数;2、使用random函数和特定范围来生成随机整数;3、使用random函数和round函数生成0-99之间的随机整数;4、使用random函数和其他函数生成更复杂的随机数;5、使用random函数和其他函数生成范围内的随机小数;6、使用random函数和其他函数生成范围内的随机整数或小数。

989

2023.09.04

如何启用JavaScript
如何启用JavaScript

JavaScript启用方法有内联脚本、内部脚本、外部脚本和异步加载。详细介绍:1、内联脚本是将JavaScript代码直接嵌入到HTML标签中;2、内部脚本是将JavaScript代码放置在HTML文件的`<script>`标签中;3、外部脚本是将JavaScript代码放置在一个独立的文件;4、外部脚本是将JavaScript代码放置在一个独立的文件。

652

2023.09.12

Js中Symbol类详解
Js中Symbol类详解

javascript中的Symbol数据类型是一种基本数据类型,用于表示独一无二的值。Symbol的特点:1、独一无二,每个Symbol值都是唯一的,不会与其他任何值相等;2、不可变性,Symbol值一旦创建,就不能修改或者重新赋值;3、隐藏性,Symbol值不会被隐式转换为其他类型;4、无法枚举,Symbol值作为对象的属性名时,默认是不可枚举的。

537

2023.09.20

ip地址修改教程大全
ip地址修改教程大全

本专题整合了ip地址修改教程大全,阅读下面的文章自行寻找合适的解决教程。

27

2025.12.26

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
10分钟--Midjourney创作自己的漫画
10分钟--Midjourney创作自己的漫画

共1课时 | 0.1万人学习

Midjourney 关键词系列整合
Midjourney 关键词系列整合

共13课时 | 0.9万人学习

AI绘画教程
AI绘画教程

共2课时 | 0.2万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号