0

0

Pandas DataFrame中基于字符串包含与排除的多条件筛选

心靈之曲

心靈之曲

发布时间:2025-08-11 23:04:37

|

421人浏览过

|

来源于php中文网

原创

Pandas DataFrame中基于字符串包含与排除的多条件筛选

本教程详细介绍了如何在Pandas DataFrame中利用str.contains()方法进行字符串的高级筛选。我们将重点讲解如何结合逻辑运算符(如&表示“与”,~表示“非”)实现多条件匹配,包括“包含特定字符串A且不包含字符串B”的复杂逻辑。通过实例代码,帮助读者高效地从DataFrame中提取符合特定模式的数据,提升数据处理能力。

在数据分析和处理中,我们经常需要根据文本列的内容进行筛选。pandas库提供了强大的字符串方法,其中str.contains()是检查字符串是否包含特定子串的常用工具。然而,当需要同时满足多个条件,例如“包含某个词”并且“不包含另一个词”时,就需要结合pandas的逻辑运算符来构建复杂的筛选表达式。

理解 str.contains() 与布尔索引

df['列名'].str.contains('子串')方法会返回一个布尔Series(布尔序列),其中对应位置的值为True表示该行字符串包含指定子串,False则表示不包含。这个布尔Series可以直接用于DataFrame的布尔索引,从而筛选出符合条件的行。

例如,要筛选出Details列中包含“Mercedes”的行:

import pandas as pd

# 创建示例DataFrame
data = {'Details': ['Mercedes 123', 'Mercedes 456', 'Green not sold', 'BMW 789', 'Mercedes Benz'],
        'Value': [10, 20, 30, 40, 50]}
df = pd.DataFrame(data)

print("原始DataFrame:")
print(df)

# 筛选包含 'Mercedes' 的行
contains_mercedes = df['Details'].str.contains('Mercedes')
print("\n包含 'Mercedes' 的布尔序列:")
print(contains_mercedes)

filtered_df = df[contains_mercedes]
print("\n筛选结果 (包含 'Mercedes'):")
print(filtered_df)

组合多条件逻辑

在Pandas中,对布尔Series进行逻辑运算时,需要使用特定的位运算符:

  • & (与/AND):当且仅当两个条件都为True时,结果为True。
  • | (或/OR):当至少一个条件为True时,结果为True。
  • ~ (非/NOT):对条件进行取反,True变为False,False变为True。

重要提示: 请勿使用Python原生的and、or、not关键字直接对Pandas布尔Series进行操作,因为它们会尝试评估整个Series的真值,而不是进行元素级的逻辑运算,这通常会导致ValueError。

实现“包含A且不包含B”的逻辑

假设我们需要筛选出Details列中包含“Mercedes”但包含“123”的行。这可以分解为两个条件:

  1. Details列包含“Mercedes”。
  2. Details列不包含“123”。

将这两个条件用逻辑“与”连接起来,并对第二个条件进行“非”操作,表达式如下:

MCP官网
MCP官网

Model Context Protocol(模型上下文协议)

下载

df['Details'].str.contains('Mercedes') & ~df['Details'].str.contains('123')

下面通过一个具体的例子来演示如何应用这种逻辑,并结合df.mask()方法来更新DataFrame中的值:

import pandas as pd

# 创建示例DataFrame
data = {'Details': ['Mercedes 123', 'Mercedes 456', 'Green not sold', 'BMW 789', 'Mercedes Benz', 'Mercedes AMG 123'],
        'check': ['Initial Value'] * 6}
df = pd.DataFrame(data)

print("原始DataFrame:")
print(df)

# 定义要替换的值
color1_val = "Mercedes 123 Matched"
color2_val = "Mercedes without 123"

# 场景1: 包含 'Mercedes' 且包含 '123'
# 对应原始问题中想实现但不是最终目标的情况
df_scenario1 = df.copy()
condition_both = df_scenario1['Details'].str.contains('Mercedes') & df_scenario1['Details'].str.contains('123')
df_scenario1['check'] = df_scenario1['check'].mask(condition_both, color1_val)
print("\n场景1: 包含 'Mercedes' 且包含 '123' 的结果:")
print(df_scenario1)

# 场景2: 包含 'Mercedes' 且不包含 '123'
# 这是本教程的核心解决方案
df_scenario2 = df.copy()
condition_mercedes_not_123 = df_scenario2['Details'].str.contains('Mercedes') & ~df_scenario2['Details'].str.contains('123')
df_scenario2['check'] = df_scenario2['check'].mask(condition_mercedes_not_123, color2_val)
print("\n场景2: 包含 'Mercedes' 且不包含 '123' 的结果:")
print(df_scenario2)

# 也可以直接用于筛选行
filtered_rows = df[condition_mercedes_not_123]
print("\n直接筛选出包含 'Mercedes' 且不包含 '123' 的行:")
print(filtered_rows)

在上述代码中:

  • df_scenario1演示了如何查找同时满足两个“包含”条件的行。
  • df_scenario2则展示了如何利用~运算符实现“包含A且不包含B”的复杂逻辑。df.mask(condition, value)方法会根据condition(一个布尔Series)为True的位置,将DataFrame中对应列的值替换为value。

注意事项与最佳实践

  1. 处理缺失值 (NaN): 默认情况下,如果字符串列中存在NaN值,str.contains()会返回NaN。这在布尔索引中可能导致问题。为了避免这种情况,可以在str.contains()中设置na=False(或na=True,根据需求决定),它会将NaN值视为False(或True)。

    # 示例:处理NaN
    df_nan = pd.DataFrame({'Text': ['apple', 'banana', None, 'orange']})
    print("\n包含NaN的DataFrame:")
    print(df_nan)
    # 默认行为,None会是NaN
    print(df_nan['Text'].str.contains('a'))
    # 设置na=False,将NaN视为False
    print(df_nan['Text'].str.contains('a', na=False))
  2. 忽略大小写 (case-insensitive): 如果需要进行不区分大小写的匹配,可以将case=False参数传递给str.contains()。

    df_case = pd.DataFrame({'Product': ['Apple', 'apple', 'Banana']})
    print("\n不区分大小写匹配:")
    print(df_case['Product'].str.contains('apple', case=False))
  3. 使用正则表达式 (regex): str.contains()默认支持正则表达式。如果需要更复杂的模式匹配,可以利用正则表达式的强大功能。例如,匹配“Mercedes”或“BMW”:

    print("\n使用正则表达式匹配 'Mercedes' 或 'BMW':")
    print(df['Details'].str.contains('Mercedes|BMW'))
  4. 括号的重要性: 在组合多个条件时,使用括号()明确表达式的优先级非常重要,尤其是在涉及&、|和~时,以避免逻辑错误。

总结

通过本教程,我们深入探讨了如何在Pandas DataFrame中利用str.contains()方法结合逻辑运算符&(与)和~(非)实现复杂的字符串条件筛选。掌握这种技巧能够极大地提升数据清洗和预处理的效率,帮助用户从海量文本数据中精准地提取所需信息。记住,在Pandas中进行元素级布尔运算时,务必使用位运算符&、|和~,并合理利用na和case参数来处理特殊情况。

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

716

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

627

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

740

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1236

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

575

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

699

2023.08.11

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

65

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.6万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.0万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号