0

0

基于PaddlePaddle2.0-构建门控循环单元模型

P粉084495128

P粉084495128

发布时间:2025-08-01 14:19:36

|

211人浏览过

|

来源于php中文网

原创

陆平在文中介绍基于PaddlePaddle2.0构建门控循环单元(GRU)模型的流程,GRU通过重置门与更新门选择性记忆时序信息,并给出相关公式。还以IMDB电影评论数据为例,构建模型进行情感倾向预测,经10轮训练,测试集准确率达84%至85%。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

基于paddlepaddle2.0-构建门控循环单元模型 - php中文网

基于PaddlePaddle2.0-构建门控循环单元模型

作者:陆平

1. 建模流程

相比于长短期记忆模型,门控循环单元(GRU)的门控机制更加简单,通过重置门与更新门来选择性记忆时序信息。

门控循环单元模型整体结构如下:

基于PaddlePaddle2.0-构建门控循环单元模型 - php中文网

重置门用来控制新记忆中包含上一时间步输出Ht1Ht−1的比例。给定一个大小为n的批量样本,输入特征数量为d,输出特征数量为q。时间步t的输入表示为XtRn×dXt∈Rn×d,批量化的输入特征与权重WtRd×qWt∈Rd×q相乘,再加上时间步t-1的输出特征Ht1Rn×qHt−1∈Rn×q与权重UtRq×qUt∈Rq×q乘积,之后用sigmoid函数进行激活,得到输出rtRn×qrt∈Rn×q为:

rt=σ(XtWr+Ht1Ur)rt=σ(XtWr+Ht−1Ur)

rtrt与Ht1UhHt−1Uh按元素相乘可以得到上一时间步输出信息保留量,时间步t的输入特征XtXt与权重WhRd×qWh∈Rd×q相乘得到当前时间步输入的线性转化,两者相加后接tanh函数激活,得到输出H~tRn×qH~t∈Rn×q,这代表新记忆。

H~t=tanh(rtHt1Uh+XtWh)H~t=tanh(rt⊙Ht−1Uh+XtWh)

AI Sofiya
AI Sofiya

一款AI驱动的多功能工具

下载

更新门用来控制门控循环单元输出中包含上一时间步输出Ht1Ht−1的比例。时间步t的输入XtRn×dXt∈Rn×d与权重WzRd×qWz∈Rd×q相乘,再加上时间步t-1的输出Ht1Ht−1与权重UzRq×qUz∈Rq×q乘积,之后用sigmoid函数进行激活,得到输出ztRn×qzt∈Rn×q为:

zt=σ(XtWz+Ht1Uz)zt=σ(XtWz+Ht−1Uz)

时间步t的单元输出HtHt是由新记忆H~tH~t与上一时间步的输出特征Ht1Ht−1的加权求和,输出HtRn×qHt∈Rn×q为:

Ht=(1zt)Ht1+ztH~tHt=(1−zt)⊙Ht−1+zt⊙H~t

2. 基于GRU模型的电影评论情感倾向预测

基于PaddlePaddle2.0基础API构建门控循环神经网络模型,利用互联网电影资料库Imdb数据来进行电影评论情感倾向预测

In [1]
import numpy as npimport paddle#准备数据#加载IMDB数据imdb_train = paddle.text.datasets.Imdb(mode='train') #训练数据集imdb_test = paddle.text.datasets.Imdb(mode='test') #测试数据集#获取字典word_dict = imdb_train.word_idx#在字典中增加一个字符串word_dict[''] = len(word_dict)

vocab_size = len(word_dict)
embedding_size = 256hidden_size = 256n_layers = 2dropout = 0.5seq_len = 200batch_size = 64epochs = 10pad_id = word_dict['']def padding(dataset):
    padded_sents = []
    labels = []    for batch_id, data in enumerate(dataset):
        sent, label = data[0].astype('int64'), data[1].astype('int64')
        padded_sent = np.concatenate([sent[:seq_len], [pad_id] * (seq_len - len(sent))]).astype('int64')
        padded_sents.append(padded_sent)
        labels.append(label)    return np.array(padded_sents), np.array(labels)

train_x, train_y = padding(imdb_train)
test_x, test_y = padding(imdb_test)    
class IMDBDataset(paddle.io.Dataset):
    def __init__(self, sents, labels):
        self.sents = sents
        self.labels = labels    def __getitem__(self, index):
        data = self.sents[index]
        label = self.labels[index]        return data, label    def __len__(self):
        return len(self.sents)

train_dataset = IMDBDataset(train_x, train_y)
test_dataset = IMDBDataset(test_x, test_y)

train_loader = paddle.io.DataLoader(train_dataset, return_list=True, shuffle=True, batch_size=batch_size, drop_last=True)
test_loader = paddle.io.DataLoader(test_dataset, return_list=True, shuffle=True, batch_size=batch_size, drop_last=True)#构建模型class GRUModel(paddle.nn.Layer):
    def __init__(self):
        super(GRUModel, self).__init__()
        self.embedding = paddle.nn.Embedding(vocab_size, embedding_size)
        self.gru_layer = paddle.nn.GRU(embedding_size, 
                                         hidden_size, 
                                         num_layers=n_layers, 
                                         direction='bidirectional', 
                                         dropout=dropout)
        self.linear = paddle.nn.Linear(in_features=hidden_size * 2, out_features=2)
        self.dropout = paddle.nn.Dropout(dropout)        
    def forward(self, text):
        #输入text形状大小为[batch_size, seq_len]
        embedded = self.dropout(self.embedding(text))        #embedded形状大小为[batch_size, seq_len, embedding_size]
        output, hidden = self.gru_layer(embedded)        #output形状大小为[batch_size,seq_len,num_directions * hidden_size]
        #hidden形状大小为[num_layers * num_directions, batch_size, hidden_size]
        #把前向的hidden与后向的hidden合并在一起
        hidden = paddle.concat((hidden[-2,:,:], hidden[-1,:,:]), axis = 1)
        hidden = self.dropout(hidden)        #hidden形状大小为[batch_size, hidden_size * num_directions]
        return self.linear(hidden)

model = paddle.Model(GRUModel()) #PaddlePaddle2.0高层API,需要用Model封装模型#模型配置model.prepare(paddle.optimizer.Adam(learning_rate=0.001, parameters=model.parameters()),
              paddle.nn.CrossEntropyLoss(),
              paddle.metric.Accuracy())#模型训练model.fit(train_loader,
          test_loader,
          epochs=epochs,
          batch_size=batch_size,
          verbose=1)
Cache file /home/aistudio/.cache/paddle/dataset/imdb/imdb%2FaclImdb_v1.tar.gz not found, downloading https://dataset.bj.bcebos.com/imdb%2FaclImdb_v1.tar.gz 
Begin to download

Download finished
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/distributed/parallel.py:119: UserWarning: Currently not a parallel execution environment, `paddle.distributed.init_parallel_env` will not do anything.
  "Currently not a parallel execution environment, `paddle.distributed.init_parallel_env` will not do anything."
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/utils.py:77: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working
  return (isinstance(seq, collections.Sequence) and
The loss value printed in the log is the current step, and the metric is the average value of previous step.
Epoch 1/10
step 390/390 [==============================] - loss: 0.4013 - acc: 0.7027 - 46ms/step        
Eval begin...
The loss value printed in the log is the current batch, and the metric is the average value of previous step.
step 390/390 [==============================] - loss: 0.3364 - acc: 0.8394 - 18ms/step        
Eval samples: 24960
Epoch 2/10
step 390/390 [==============================] - loss: 0.2342 - acc: 0.8760 - 45ms/step         
Eval begin...
The loss value printed in the log is the current batch, and the metric is the average value of previous step.
step 390/390 [==============================] - loss: 0.3898 - acc: 0.8710 - 18ms/step        
Eval samples: 24960
Epoch 3/10
step 390/390 [==============================] - loss: 0.3563 - acc: 0.9151 - 45ms/step         
Eval begin...
The loss value printed in the log is the current batch, and the metric is the average value of previous step.
step 390/390 [==============================] - loss: 0.3252 - acc: 0.8697 - 18ms/step        
Eval samples: 24960
Epoch 4/10
step 390/390 [==============================] - loss: 0.2071 - acc: 0.9355 - 45ms/step         
Eval begin...
The loss value printed in the log is the current batch, and the metric is the average value of previous step.
step 390/390 [==============================] - loss: 0.5057 - acc: 0.8571 - 19ms/step        
Eval samples: 24960
Epoch 5/10
step 390/390 [==============================] - loss: 0.1606 - acc: 0.9505 - 45ms/step         
Eval begin...
The loss value printed in the log is the current batch, and the metric is the average value of previous step.
step 390/390 [==============================] - loss: 0.4060 - acc: 0.8417 - 19ms/step        
Eval samples: 24960
Epoch 6/10
step 390/390 [==============================] - loss: 0.2904 - acc: 0.9646 - 45ms/step         
Eval begin...
The loss value printed in the log is the current batch, and the metric is the average value of previous step.
step 390/390 [==============================] - loss: 0.4060 - acc: 0.8482 - 18ms/step        
Eval samples: 24960
Epoch 7/10
step 390/390 [==============================] - loss: 0.1081 - acc: 0.9702 - 45ms/step         
Eval begin...
The loss value printed in the log is the current batch, and the metric is the average value of previous step.
step 390/390 [==============================] - loss: 0.5072 - acc: 0.8516 - 18ms/step        
Eval samples: 24960
Epoch 8/10
step 390/390 [==============================] - loss: 0.0677 - acc: 0.9764 - 45ms/step         
Eval begin...
The loss value printed in the log is the current batch, and the metric is the average value of previous step.
step 390/390 [==============================] - loss: 0.3075 - acc: 0.8509 - 18ms/step        
Eval samples: 24960
Epoch 9/10
step 390/390 [==============================] - loss: 0.1687 - acc: 0.9797 - 44ms/step         
Eval begin...
The loss value printed in the log is the current batch, and the metric is the average value of previous step.
step 390/390 [==============================] - loss: 0.6582 - acc: 0.8468 - 19ms/step        
Eval samples: 24960
Epoch 10/10
step 390/390 [==============================] - loss: 0.0149 - acc: 0.9835 - 45ms/step         
Eval begin...
The loss value printed in the log is the current batch, and the metric is the average value of previous step.
step 390/390 [==============================] - loss: 0.5828 - acc: 0.8450 - 18ms/step        
Eval samples: 24960

经过10轮epoch训练,模型在测试数据集上的准确率大约为84%至85%。

相关专题

更多
c++主流开发框架汇总
c++主流开发框架汇总

本专题整合了c++开发框架推荐,阅读专题下面的文章了解更多详细内容。

77

2026.01.09

c++框架学习教程汇总
c++框架学习教程汇总

本专题整合了c++框架学习教程汇总,阅读专题下面的文章了解更多详细内容。

45

2026.01.09

学python好用的网站推荐
学python好用的网站推荐

本专题整合了python学习教程汇总,阅读专题下面的文章了解更多详细内容。

118

2026.01.09

学python网站汇总
学python网站汇总

本专题整合了学python网站汇总,阅读专题下面的文章了解更多详细内容。

10

2026.01.09

python学习网站
python学习网站

本专题整合了python学习相关推荐汇总,阅读专题下面的文章了解更多详细内容。

14

2026.01.09

俄罗斯手机浏览器地址汇总
俄罗斯手机浏览器地址汇总

汇总俄罗斯Yandex手机浏览器官方网址入口,涵盖国际版与俄语版,适配移动端访问,一键直达搜索、地图、新闻等核心服务。

70

2026.01.09

漫蛙稳定版地址大全
漫蛙稳定版地址大全

漫蛙稳定版地址大全汇总最新可用入口,包含漫蛙manwa漫画防走失官网链接,确保用户随时畅读海量正版漫画资源,建议收藏备用,避免因域名变动无法访问。

324

2026.01.09

php学习网站大全
php学习网站大全

精选多个优质PHP入门学习网站,涵盖教程、实战与文档,适合零基础到进阶开发者,助你高效掌握PHP编程。

42

2026.01.09

php网站搭建教程大全
php网站搭建教程大全

本合集专为零基础用户打造,涵盖PHP网站搭建全流程,从环境配置到实战开发,免费、易懂、系统化,助你快速入门建站!

12

2026.01.09

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 3万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.1万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号