0

0

【ICLR 2022】自适应傅里叶神经算子:Transfomer的有效令牌混合器

P粉084495128

P粉084495128

发布时间:2025-08-01 14:11:49

|

589人浏览过

|

来源于php中文网

原创

自适应傅里叶神经算子(AFNO)是一种高效令牌混合器,基于傅里叶神经算子(FNO)改进,在傅里叶域实现令牌混合。通过块对角结构、自适应权重共享及软阈值稀疏化频率模式,解决了FNO在视觉任务中的效率问题,具有准线性复杂度和线性内存。在少样本分割、城市景观分割等任务中,效率与准确性均优于自注意力机制。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

【iclr 2022】自适应傅里叶神经算子:transfomer的有效令牌混合器 - php中文网

自适应傅里叶神经算子:Transfomer的有效令牌混合器

摘要

        视觉Transformer在表征学习中取得了巨大的成功。 这主要是由于通过自注意力有效地混合了表征。 然而,这与像素数成二次比例,这对于高分辨率输入来说变得不可行。 为了应对这一挑战,我们提出了自适应傅立叶神经算子(AFNO)作为一种有效的令牌混合器,它可以在傅立叶域学习混合。 AFNO是基于算子学习的一个基元,它允许我们将令牌混合看做一个连续的全局卷积,而不依赖于输入分辨率。 这一原理以前被用于设计FNO,它在傅立叶域有效地解决了全局卷积,并在学习具有挑战性的偏微分方程方面显示出了希望。 为了解决视觉表示学习中的挑战,如图像的不连续性和高分辨率输入,我们对FNO提出了原则性的结构修改,从而提高了内存和计算效率。 这包括在通道混合权重上施加块对角结构,在令牌之间自适应地共享权重,以及通过软阈值化和收缩来稀疏频率模式。 所得到的模型具有高度的并行性和准线性复杂度,并且在序列大小上具有线性内存。 对于少样本分割,AFNO在效率和准确性方面都优于自注意力机制。 对于使用SegFormer-B3主干的城市景观分割,AFNO可以处理65K的序列大小,并且性能优于其他自注意力机制。

1. AFNO

【ICLR 2022】自适应傅里叶神经算子:Transfomer的有效令牌混合器 - php中文网        

1.1 FNO

        具有平移不变性的核具有一个理想性质,即它可以分解成特征函数的线性组合。根据卷积定理,空间域中的全局卷积操作相当于特征变换域中的乘法。利用这一定理的一个典型模型就是傅里叶神经算子(FNO)。其连续形式定义如下:

K(X)(s)=F1(F(κ)F(X))(s)sD,K(X)(s)=F−1(F(κ)⋅F(X))(s)∀s∈D,

        受FNO启发,本文使用离散FNO来对图像进行处理,定义如下:

step(1).token mixingzm,n=[DFT(X)]m,nstep(2).channel mixingz~m,n=Wm,nzm,nstep(3).token demixingym,n=[IDFT(Z~)]m,nstep(1).token mixingstep(2).channel mixingstep(3).token demixingzm,nz~m,nym,n=[DFT(X)]m,n=Wm,nzm,n=[IDFT(Z~)]m,n

        简单将FNO用于视觉任务有如下几个缺点:

  1. 由于每个Token都有自己的通道混合权重且参数是 O(Nd2)O(Nd2) ,因此难以随图像分辨率一起缩放
  2. 权重是静态的,因此会削弱泛化能力

1.2 AFNO

        为解决上述问题,本文提出了一种新的FNO——AFNO,主要有如下几点改进:

魔术橡皮擦
魔术橡皮擦

智能擦除、填补背景内容

下载
  1. 对权重W使用块对角结构。类似多头注意力,将权重W分成多个块。

z~m,n()=Wm,n()zm,n(),=1,,kz~m,n(ℓ)=Wm,n(ℓ)zm,n(ℓ),ℓ=1,…,k

  1. 权重共享。使用MLP来自适应样本(?有点勉强),同时进行权重共享以减少开销

z~m,n=MLP(zm,n)=W2σ(W1zm,n)+bz~m,n=MLP(zm,n)=W2σ(W1zm,n)+b

  1. 软阈值与收缩。图像在傅立叶域内具有稀疏性,大部分能量集中在低频模式附近。 因此,可以根据令牌对最终任务的重要性自适应地mask令牌。 这可以使用表达性来表示重要的令牌。 为了稀疏化标记,本文使用非线性Lasso Tibshirani通道混合,而不是线性组合,如下所示

minz~m,nWm,nzm,n2+λz~m,n1min∥z~m,n−Wm,nzm,n∥2+λ∥z~m,n∥1

        该操作可以使用softshrink激活函数来解决。

\begin{align} \tilde{z}_{m, n} & = S_{\lambda}\left(W_{m, n} z_{m, n}\right) \\ S_{\lambda}(x) & = \operatorname{sign}(x) \max \{|x|-\lambda, 0\} \end{align}

2. 代码复现

2.1 下载并导入所需的库

In [ ]
%matplotlib inlineimport paddleimport numpy as npimport matplotlib.pyplot as pltfrom paddle.vision.datasets import Cifar10from paddle.vision.transforms import Transposefrom paddle.io import Dataset, DataLoaderfrom paddle import nnimport paddle.nn.functional as Fimport paddle.vision.transforms as transformsimport osimport matplotlib.pyplot as pltfrom matplotlib.pyplot import figureimport itertoolsfrom functools import partialimport math
   

2.2 创建数据集

In [3]
train_tfm = transforms.Compose([
    transforms.RandomResizedCrop(224, scale=(0.6, 1.0)),
    transforms.ColorJitter(brightness=0.2,contrast=0.2, saturation=0.2),
    transforms.RandomHorizontalFlip(0.5),
    transforms.RandomRotation(20),
    transforms.ToTensor(),
    transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
])

test_tfm = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
])
   
In [4]
paddle.vision.set_image_backend('cv2')# 使用Cifar10数据集train_dataset = Cifar10(data_file='data/data152754/cifar-10-python.tar.gz', mode='train', transform = train_tfm, )
val_dataset = Cifar10(data_file='data/data152754/cifar-10-python.tar.gz', mode='test',transform = test_tfm)print("train_dataset: %d" % len(train_dataset))print("val_dataset: %d" % len(val_dataset))
       
train_dataset: 50000
val_dataset: 10000
       
In [5]
batch_size=256
   
In [6]
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=4)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, drop_last=False, num_workers=4)
   

2.3 模型的创建

2.3.1 标签平滑

In [7]
class LabelSmoothingCrossEntropy(nn.Layer):
    def __init__(self, smoothing=0.1):
        super().__init__()
        self.smoothing = smoothing    def forward(self, pred, target):

        confidence = 1. - self.smoothing
        log_probs = F.log_softmax(pred, axis=-1)
        idx = paddle.stack([paddle.arange(log_probs.shape[0]), target], axis=1)
        nll_loss = paddle.gather_nd(-log_probs, index=idx)
        smooth_loss = paddle.mean(-log_probs, axis=-1)
        loss = confidence * nll_loss + self.smoothing * smooth_loss        return loss.mean()
   

2.3.2 DropPath

In [8]
def drop_path(x, drop_prob=0.0, training=False):
    """
    Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
    """
    if drop_prob == 0.0 or not training:        return x
    keep_prob = paddle.to_tensor(1 - drop_prob)
    shape = (paddle.shape(x)[0],) + (1,) * (x.ndim - 1)
    random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype)
    random_tensor = paddle.floor(random_tensor)  # binarize
    output = x.divide(keep_prob) * random_tensor    return outputclass DropPath(nn.Layer):
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)
   

2.3.3 AFNO模型的创建

In [9]
class AFNO2D(nn.Layer):
    """
    hidden_size: channel dimension size
    num_blocks: how many blocks to use in the block diagonal weight matrices (higher => less complexity but less parameters)
    sparsity_threshold: lambda for softshrink
    hard_thresholding_fraction: how many frequencies you want to completely mask out (lower => hard_thresholding_fraction^2 less FLOPs)
    """
    def __init__(self, hidden_size, num_blocks=8, sparsity_threshold=0.01, hard_thresholding_fraction=1, hidden_size_factor=1):
        super().__init__()        assert hidden_size % num_blocks == 0, f"hidden_size {hidden_size} should be divisble by num_blocks {num_blocks}"

        self.hidden_size = hidden_size
        self.sparsity_threshold = sparsity_threshold
        self.num_blocks = num_blocks
        self.block_size = self.hidden_size // self.num_blocks
        self.hard_thresholding_fraction = hard_thresholding_fraction
        self.hidden_size_factor = hidden_size_factor
        self.scale = 0.02

        self.w1 = self.create_parameter(shape=(2, self.num_blocks, self.block_size, self.block_size * self.hidden_size_factor), default_initializer=nn.initializer.TruncatedNormal(std=.02))
        self.b1 = self.create_parameter(shape=(2, self.num_blocks, self.block_size * self.hidden_size_factor), default_initializer=nn.initializer.TruncatedNormal(std=.02))
        self.w2 = self.create_parameter(shape=(2, self.num_blocks, self.block_size * self.hidden_size_factor, self.block_size), default_initializer=nn.initializer.TruncatedNormal(std=.02))
        self.b2 = self.create_parameter(shape=(2, self.num_blocks, self.block_size), default_initializer=nn.initializer.TruncatedNormal(std=.02))    def forward(self, x, spatial_size=None):
        bias = x

        B, N, C = x.shape        if spatial_size == None:
            H = W = int(math.sqrt(N))        else:
            H, W = spatial_size

        x = x.reshape((B, H, W, C))
        x = paddle.fft.rfft2(x, axes=(1, 2), norm="ortho")
        x = x.reshape((B, x.shape[1], x.shape[2], self.num_blocks, self.block_size))

        o1_real = paddle.zeros([B, x.shape[1], x.shape[2], self.num_blocks, self.block_size * self.hidden_size_factor])
        o1_imag = paddle.zeros([B, x.shape[1], x.shape[2], self.num_blocks, self.block_size * self.hidden_size_factor])
        o2_real = paddle.zeros(x.shape)
        o2_imag = paddle.zeros(x.shape)

        total_modes = N // 2 + 1
        kept_modes = int(total_modes * self.hard_thresholding_fraction)

        o1_real[:, :, :kept_modes] = F.relu(
            paddle.einsum('bhwnc, ncd->bhwnd', x[:, :, :kept_modes].real(), self.w1[0]) - \
            paddle.einsum('bhwnc, ncd->bhwnd', x[:, :, :kept_modes].imag(), self.w1[1]) + \
            self.b1[0]
        )

        o1_imag[:, :, :kept_modes] = F.relu(
            paddle.einsum('bhwnc, ncd->bhwnd', x[:, :, :kept_modes].imag(), self.w1[0]) + \
            paddle.einsum('bhwnc, ncd->bhwnd', x[:, :, :kept_modes].real(), self.w1[1]) + \
            self.b1[1]
        )

        o2_real[:, :, :kept_modes] = (
            paddle.einsum('bhwnc, ncd->bhwnd', o1_real[:, :, :kept_modes], self.w2[0]) - \
            paddle.einsum('bhwnc, ncd->bhwnd', o1_imag[:, :, :kept_modes], self.w2[1]) + \
            self.b2[0]
        )

        o2_imag[:, :, :kept_modes] = (
            paddle.einsum('bhwnc, ncd->bhwnd', o1_imag[:, :, :kept_modes], self.w2[0]) + \
            paddle.einsum('bhwnc, ncd->bhwnd', o1_real[:, :, :kept_modes], self.w2[1]) + \
            self.b2[1]
        )

        x = paddle.stack([o2_real, o2_imag], axis=-1)
        x = F.softshrink(x, threshold=self.sparsity_threshold)
        x = paddle.as_complex(x)
        x = x.reshape((B, x.shape[1], x.shape[2], C))
        x = paddle.fft.irfft2(x, s=(H, W), axes=(1, 2), norm="ortho")
        x = x.reshape((B, N, C))        return x + bias
   
In [10]
class Mlp(nn.Layer):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)        return x
   
In [11]
class Block(nn.Layer):
    def __init__(self, dim, hidden_size, fno_blocks, mlp_ratio=4., drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, h=14, w=8, use_fno=False, use_blocks=False):
        super().__init__()
        self.norm1 = norm_layer(dim)

        self.filter = AFNO2D(hidden_size=hidden_size, num_blocks=fno_blocks, sparsity_threshold=0.01, hard_thresholding_fraction=1, hidden_size_factor=1)

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)    def forward(self, x):
        residual = x
        x = self.norm1(x)
        x = self.filter(x)

        x = x + residual
        residual = x

        x = self.norm2(x)
        x = self.mlp(x)
        x = self.drop_path(x)
        x = x + residual        return x
   
In [12]
def to_2tuple(x):
    return (x, x)class PatchEmbed(nn.Layer):
    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = num_patches

        self.proj = nn.Conv2D(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)    def forward(self, x):
        B, C, H, W = x.shape        # FIXME look at relaxing size constraints
        assert H == self.img_size[0] and W == self.img_size[1], \            f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        x = self.proj(x).flatten(2).transpose([0, 2, 1])        return x
   
In [13]
class DownLayer(nn.Layer):
    def __init__(self, img_size=56, dim_in=64, dim_out=128):
        super().__init__()
        self.img_size = img_size
        self.dim_in = dim_in
        self.dim_out = dim_out
        self.proj = nn.Conv2D(dim_in, dim_out, kernel_size=2, stride=2)
        self.num_patches = img_size * img_size // 4

    def forward(self, x):
        B, N, C = x.size()
        x = x.reshape((B, self.img_size, self.img_size, C)).transpose([0, 3, 1, 2])
        x = self.proj(x).transpose([0, 2, 3, 1])
        x = x.reshape((B, -1, self.dim_out))        return x
   
In [14]
class AFNONet(nn.Layer):
    def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=384, depth=12,
                 mlp_ratio=4., representation_size=None, uniform_drop=False,
                 drop_rate=0., drop_path_rate=0., norm_layer=None,
                 dropcls=0, use_fno=False, use_blocks=False, hidden_size=384, fno_blocks=2):

        super().__init__()

        self.num_classes = num_classes
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        norm_layer = norm_layer or partial(nn.LayerNorm, epsilon=1e-6)

        self.patch_embed = PatchEmbed(
                img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
        num_patches = self.patch_embed.num_patches

        self.pos_embed = self.create_parameter(shape=(1, num_patches, embed_dim), default_initializer=nn.initializer.TruncatedNormal(std=.02))
        self.pos_drop = nn.Dropout(p=drop_rate)

        h = img_size // patch_size
        w = h // 2 + 1

        if uniform_drop:            # print('using uniform droppath with expect rate', drop_path_rate)
            dpr = [drop_path_rate for _ in range(depth)]  # stochastic depth decay rule
        else:            # print('using linear droppath with expect rate', drop_path_rate * 0.5)
            dpr = [x.item() for x in paddle.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule
        # dpr = [drop_path_rate for _ in range(depth)]  # stochastic depth decay rule

        self.blocks = nn.LayerList([
            Block(
                dim=embed_dim, hidden_size=hidden_size, fno_blocks=fno_blocks, mlp_ratio=mlp_ratio,
                drop=drop_rate, drop_path=dpr[i], norm_layer=norm_layer, h=h, w=w, use_fno=use_fno, use_blocks=use_blocks)            for i in range(depth)])

        self.norm = norm_layer(embed_dim)        # Representation layer
        if representation_size:
            self.num_features = representation_size
            self.pre_logits = nn.Sequential(OrderedDict([
                ('fc', nn.Linear(embed_dim, representation_size)),
                ('act', nn.Tanh())
            ]))        else:
            self.pre_logits = nn.Identity()        # Classifier head
        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()        if dropcls > 0:            print('dropout %.2f before classifier' % dropcls)
            self.final_dropout = nn.Dropout(p=dropcls)        else:
            self.final_dropout = nn.Identity()

        self.apply(self._init_weights)    def _init_weights(self, m):
        tn = nn.initializer.TruncatedNormal(std=.02)
        zero = nn.initializer.Constant(0.0)
        one = nn.initializer.Constant(1.0)        if isinstance(m, nn.Linear):
            tn(m.weight)            if isinstance(m, nn.Linear) and m.bias is not None:
                zero(m.bias)        elif isinstance(m, nn.LayerNorm):
            zero(m.bias)
            one(m.weight)    def forward_features(self, x):
        B = x.shape[0]
        x = self.patch_embed(x)
        x = x + self.pos_embed
        x = self.pos_drop(x)        for blk in self.blocks:
            x = blk(x)

        x = self.norm(x).mean(1)        return x    def forward(self, x):
        x = self.forward_features(x)
        x = self.final_dropout(x)
        x = self.head(x)        return x
   

2.3.4 模型的参数

In [ ]
model = AFNONet(num_classes=10)
paddle.summary(model, (1, 3, 224, 224))
   

【ICLR 2022】自适应傅里叶神经算子:Transfomer的有效令牌混合器 - php中文网        

2.4 训练

In [16]
learning_rate = 0.001n_epochs = 100paddle.seed(42)
np.random.seed(42)
   
In [ ]
work_path = 'work/model'# AFNONetmodel = AFNONet(num_classes=10)

criterion = LabelSmoothingCrossEntropy()

scheduler = paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=learning_rate, T_max=50000 // batch_size * n_epochs, verbose=False)
optimizer = paddle.optimizer.Adam(parameters=model.parameters(), learning_rate=scheduler, weight_decay=1e-5)

gate = 0.0threshold = 0.0best_acc = 0.0val_acc = 0.0loss_record = {'train': {'loss': [], 'iter': []}, 'val': {'loss': [], 'iter': []}}   # for recording lossacc_record = {'train': {'acc': [], 'iter': []}, 'val': {'acc': [], 'iter': []}}      # for recording accuracyloss_iter = 0acc_iter = 0for epoch in range(n_epochs):    # ---------- Training ----------
    model.train()
    train_num = 0.0
    train_loss = 0.0

    val_num = 0.0
    val_loss = 0.0
    accuracy_manager = paddle.metric.Accuracy()
    val_accuracy_manager = paddle.metric.Accuracy()    print("#===epoch: {}, lr={:.10f}===#".format(epoch, optimizer.get_lr()))    for batch_id, data in enumerate(train_loader):
        x_data, y_data = data
        labels = paddle.unsqueeze(y_data, axis=1)

        logits = model(x_data)

        loss = criterion(logits, y_data)

        acc = accuracy_manager.compute(logits, labels)
        accuracy_manager.update(acc)        if batch_id % 10 == 0:
            loss_record['train']['loss'].append(loss.numpy())
            loss_record['train']['iter'].append(loss_iter)
            loss_iter += 1

        loss.backward()

        optimizer.step()
        scheduler.step()
        optimizer.clear_grad()

        train_loss += loss
        train_num += len(y_data)

    total_train_loss = (train_loss / train_num) * batch_size
    train_acc = accuracy_manager.accumulate()
    acc_record['train']['acc'].append(train_acc)
    acc_record['train']['iter'].append(acc_iter)
    acc_iter += 1
    # Print the information.
    print("#===epoch: {}, train loss is: {}, train acc is: {:2.2f}%===#".format(epoch, total_train_loss.numpy(), train_acc*100))    # ---------- Validation ----------
    model.eval()    for batch_id, data in enumerate(val_loader):

        x_data, y_data = data
        labels = paddle.unsqueeze(y_data, axis=1)        with paddle.no_grad():
          logits = model(x_data)

        loss = criterion(logits, y_data)

        acc = val_accuracy_manager.compute(logits, labels)
        val_accuracy_manager.update(acc)

        val_loss += loss
        val_num += len(y_data)

    total_val_loss = (val_loss / val_num) * batch_size
    loss_record['val']['loss'].append(total_val_loss.numpy())
    loss_record['val']['iter'].append(loss_iter)
    val_acc = val_accuracy_manager.accumulate()
    acc_record['val']['acc'].append(val_acc)
    acc_record['val']['iter'].append(acc_iter)    print("#===epoch: {}, val loss is: {}, val acc is: {:2.2f}%===#".format(epoch, total_val_loss.numpy(), val_acc*100))    # ===================save====================
    if val_acc > best_acc:
        best_acc = val_acc
        paddle.save(model.state_dict(), os.path.join(work_path, 'best_model.pdparams'))
        paddle.save(optimizer.state_dict(), os.path.join(work_path, 'best_optimizer.pdopt'))print(best_acc)
paddle.save(model.state_dict(), os.path.join(work_path, 'final_model.pdparams'))
paddle.save(optimizer.state_dict(), os.path.join(work_path, 'final_optimizer.pdopt'))
   

【ICLR 2022】自适应傅里叶神经算子:Transfomer的有效令牌混合器 - php中文网        

2.5 结果分析

In [18]
def plot_learning_curve(record, title='loss', ylabel='CE Loss'):
    ''' Plot learning curve of your CNN '''
    maxtrain = max(map(float, record['train'][title]))
    maxval = max(map(float, record['val'][title]))
    ymax = max(maxtrain, maxval) * 1.1
    mintrain = min(map(float, record['train'][title]))
    minval = min(map(float, record['val'][title]))
    ymin = min(mintrain, minval) * 0.9

    total_steps = len(record['train'][title])
    x_1 = list(map(int, record['train']['iter']))
    x_2 = list(map(int, record['val']['iter']))
    figure(figsize=(10, 6))
    plt.plot(x_1, record['train'][title], c='tab:red', label='train')
    plt.plot(x_2, record['val'][title], c='tab:cyan', label='val')
    plt.ylim(ymin, ymax)
    plt.xlabel('Training steps')
    plt.ylabel(ylabel)
    plt.title('Learning curve of {}'.format(title))
    plt.legend()
    plt.show()
   
In [19]
plot_learning_curve(loss_record, title='loss', ylabel='CE Loss')
       
               
In [20]
plot_learning_curve(acc_record, title='acc', ylabel='Accuracy')
       
               
In [21]
import time
work_path = 'work/model'model = AFNONet(num_classes=10)
model_state_dict = paddle.load(os.path.join(work_path, 'best_model.pdparams'))
model.set_state_dict(model_state_dict)
model.eval()
aa = time.time()for batch_id, data in enumerate(val_loader):

    x_data, y_data = data
    labels = paddle.unsqueeze(y_data, axis=1)    with paddle.no_grad():
        logits = model(x_data)
bb = time.time()print("Throughout:{}".format(int(len(val_dataset)//(bb - aa))))
       
Throughout:608
       
In [22]
def get_cifar10_labels(labels):
    """返回CIFAR10数据集的文本标签。"""
    text_labels = [        'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog',        'horse', 'ship', 'truck']    return [text_labels[int(i)] for i in labels]
   
In [23]
def show_images(imgs, num_rows, num_cols, pred=None, gt=None, scale=1.5):
    """Plot a list of images."""
    figsize = (num_cols * scale, num_rows * scale)
    _, axes = plt.subplots(num_rows, num_cols, figsize=figsize)
    axes = axes.flatten()    for i, (ax, img) in enumerate(zip(axes, imgs)):        if paddle.is_tensor(img):
            ax.imshow(img.numpy())        else:
            ax.imshow(img)
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)        if pred or gt:
            ax.set_title("pt: " + pred[i] + "\ngt: " + gt[i])    return axes
   
In [24]
work_path = 'work/model'X, y = next(iter(DataLoader(val_dataset, batch_size=18)))
model = AFNONet(num_classes=10)
model_state_dict = paddle.load(os.path.join(work_path, 'best_model.pdparams'))
model.set_state_dict(model_state_dict)
model.eval()
logits = model(X)
y_pred = paddle.argmax(logits, -1)
X = paddle.transpose(X, [0, 2, 3, 1])
axes = show_images(X.reshape((18, 224, 224, 3)), 1, 18, pred=get_cifar10_labels(y_pred), gt=get_cifar10_labels(y))
plt.show()
       
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
       
               

总结

        本文将Transformer与改进的FNO相结合,提出了一种新的频域混合器,为频域Transformer提供了新思路。

相关专题

更多
登录token无效
登录token无效

登录token无效解决方法:1、检查token的有效期限,如果token已经过期,需要重新获取一个新的token;2、检查token的签名,如果签名不正确,需要重新获取一个新的token;3、检查密钥的正确性,如果密钥不正确,需要重新获取一个新的token;4、使用HTTPS协议传输token,建议使用HTTPS协议进行传输 ;5、使用双因素认证,双因素认证可以提高账户的安全性。

6049

2023.09.14

登录token无效怎么办
登录token无效怎么办

登录token无效的解决办法有检查Token是否过期、检查Token是否正确、检查Token是否被篡改、检查Token是否与用户匹配、清除缓存或Cookie、检查网络连接和服务器状态、重新登录或请求新的Token、联系技术支持或开发人员等。本专题为大家提供token相关的文章、下载、课程内容,供大家免费下载体验。

783

2023.09.14

token怎么获取
token怎么获取

获取token值的方法:1、小程序调用“wx.login()”获取 临时登录凭证code,并回传到开发者服务器;2、开发者服务器以code换取,用户唯一标识openid和会话密钥“session_key”。想了解更详细的内容,可以阅读本专题下面的文章。

1052

2023.12.21

token什么意思
token什么意思

token是一种用于表示用户权限、记录交易信息、支付虚拟货币的数字货币。可以用来在特定的网络上进行交易,用来购买或出售特定的虚拟货币,也可以用来支付特定的服务费用。想了解更多token什么意思的相关内容可以访问本专题下面的文章。

1097

2024.03.01

lambda表达式
lambda表达式

Lambda表达式是一种匿名函数的简洁表示方式,它可以在需要函数作为参数的地方使用,并提供了一种更简洁、更灵活的编码方式,其语法为“lambda 参数列表: 表达式”,参数列表是函数的参数,可以包含一个或多个参数,用逗号分隔,表达式是函数的执行体,用于定义函数的具体操作。本专题为大家提供lambda表达式相关的文章、下载、课程内容,供大家免费下载体验。

202

2023.09.15

python lambda函数
python lambda函数

本专题整合了python lambda函数用法详解,阅读专题下面的文章了解更多详细内容。

189

2025.11.08

Golang channel原理
Golang channel原理

本专题整合了Golang channel通信相关介绍,阅读专题下面的文章了解更多详细内容。

241

2025.11.14

golang channel相关教程
golang channel相关教程

本专题整合了golang处理channel相关教程,阅读专题下面的文章了解更多详细内容。

320

2025.11.17

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

74

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.7万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.0万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号