0

0

针对目标检测的对抗攻击

P粉084495128

P粉084495128

发布时间:2025-07-29 11:02:31

|

861人浏览过

|

来源于php中文网

原创

本项目测试YOLOv3模型鲁棒性,利用PaddleDetection库,在COCO2017数据集上训练模型,其对dog.jpg检测精确率达98%。通过添加椒盐噪声生成对抗样本dog2.png,再次检测时,正确率大幅下降,部分目标甚至消失,以此展示对抗样本对模型检测能力的攻击效果。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

针对目标检测的对抗攻击 - php中文网

背景

  1. 对抗样本是各种机器学习系统需要克服的一大障碍。对抗样本的存在表明模型倾向于依赖不可靠的特征来最大化性能,如果特征受到干扰,那么将造成模型误分类,可能导致灾难性的后果。对抗样本的非正式定义:以人类不可感知的方式对输入进行修改,使得修改后的输入能够被机器学习系统误分类,尽管原始输入是被正确分类的。
  2. 本项目旨在测试目标检测最受欢迎的模型之一YOLOv3的鲁棒性,通过设计对抗样本达到对模型攻击使其降低检测能力。

1.基本介绍

本项目主要展示PaddleDetection的一键式训练、预测以及python端通过Paddle预测库预测图像和视频的示例。 根据大佬提供的对抗样本生成经验应用到目标检测的实验环境中

  1. 实验模型:YOLOv3
  2. 原始图片:dog.jpg
  3. 对抗样本:dog2.png

2.环境准备

PaddleDetection下载

可以通过如下git clone命令下载PaddleDetection目标检测库,由于在AIStudio上通过git clone下载比较慢,本项目在work目录下提供下载好的PaddleDetection压缩包,也可直接解压使用。

In [1]
%cd data
!unzip -o /home/aistudio/data/data63328/PaddleDetection.zip
   

安装PaddleDetection依赖库

通过如下方式安装PaddleDetection依赖,并设置环境变量。

雷驰html商城
雷驰html商城

可以生成html页面,大大减轻服务器负担,更加增加网站在搜索引擎出现的几率增机无限级分类功能,分类设置随心所欲 增加商品VIP价格、代理价格、批发价格功能,并且可以很轻松的扩展出更多价格 针对目前网上流行的上传攻击,重新编写了上传模块的代码,杜绝上传漏洞,确保商城的安全性 优化conn.asp 加强SQL注入预防机制,让系统坚不可催 增加订单费用加收百分比功能,邮费设置更合理 后台查看修改商品增加

下载
In [2]
%cd /home/aistudio/data/PaddleDetection
!pip install -r requirements.txt # requirements.txt列出了PaddleDetection的所有依赖库!pip install Cython pycocotools
%env PYTHONPATH=.:$PYTHONPATH
%env CUDA_VISIBLE_DEVICES=0
   

3.数据准备

PaddleDetection提供了COCO、VOC等数据集下载脚本如dataset/coco/download.py,通过此脚本可自动下载对应数据集。但由于COCO数据集下载比较耗时,本项目已上传COCO2017数据集,可直接解压获取。

COCO的train数据集较大,解压比较耗时,本项目仅使用val数据集。

In [4]
# ! python dataset/coco/download_coco.py  # coco数据集下载脚本! unzip -q /home/aistudio/data/data7122/annotations_trainval2017.zip -d dataset/coco # 解压数据集! unzip -q /home/aistudio/data/data7122/val2017.zip -d dataset/coco# ! unzip /home/aistudio/data/data7122/train2017.zip -d dataset/coco
   
In [27]
! python tools/train.py -c ../../work/yolov3_darknet.yml --eval # 启动模型训练
   
In [3]
# ! python tools/infer.py -c ../../../work/yolov3_darknet53_100e_cocoval.yml --infer_img=../../work/dog.jpg! python tools/infer.py -c ../../work/yolov3_darknet.yml --infer_img=../../work/dog.jpg -o weights=https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar
   

4.通过YOLOv3训练COCO2017数据集后可以精准的识别出dog.jpg中所包含的物品,精确率达到98%

In [29]
%matplotlib inlineimport matplotlib.pyplot as plt 
import cv2

infer_img = cv2.imread("output/dog.jpg")
plt.figure(figsize=(15,10))
plt.imshow(cv2.cvtColor(infer_img, cv2.COLOR_BGR2RGB))
plt.show()
       
               

传统的对抗攻击就是在原图的基础上加入肉眼不可见的噪音干扰分类器,用数学的方式定义就是,给定分类器[公式],其中[公式] 为样本,[公式] 为样本自身的类别,假设我们需要误判为的目标类别为[公式] ,想要找到一个与[公式] 相近的[公式] 最大化 [公式] , 相近的约束表示为存在一个 [公式]误差满足 [公式].

通俗点讲,就是把Patch贴在图上,跟原图相差不大并且使分类器分类失误。 针对目标检测的对抗攻击 - php中文网        

5.对抗样本生成

1.定义添加椒盐噪声的函数。

In [5]
import cv2import numpy as npfrom matplotlib import pyplot as plt
%matplotlib inline## [Load an image from a file]img = cv2.imread("/home/aistudio/dog.jpg")
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
   
In [6]
import numpy as npimport numpy.random as random
np.random.seed(2020)def addsalt_pepper(src,percetage):
    NoiseImg=src
    NoiseNum=int(percetage*src.shape[0]*src.shape[1])    for i in range(NoiseNum):
        randX=random.random_integers(0,src.shape[0]-1)
        randY=random.random_integers(0,src.shape[1]-1)        if random.random_integers(0,1)<=0.5:
            NoiseImg[randX,randY]=0
        else:
            NoiseImg[randX,randY]=255          
    return NoiseImg
img2 = addsalt_pepper(img, 0.1)
img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2RGB)
plt.imshow(img)## 输出效果图cv2.imwrite("/home/aistudio/dog2.png", img2, [int(cv2.IMWRITE_PNG_COMPRESSION), 0])
       
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/ipykernel_launcher.py:8: DeprecationWarning: This function is deprecated. Please call randint(0, 575 + 1) instead
  
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/ipykernel_launcher.py:9: DeprecationWarning: This function is deprecated. Please call randint(0, 767 + 1) instead
  if __name__ == '__main__':
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/ipykernel_launcher.py:10: DeprecationWarning: This function is deprecated. Please call randint(0, 1 + 1) instead
  # Remove the CWD from sys.path while we load stuff.
       
True
               
               

6.当我们再次使用YOLOv3模型进行目标检测时,可以发现正确率由原先的0.98,0.96,0.85下降到0.63,0.51,自行车直接消失

In [33]
! python tools/infer.py -c ../../work/yolov3_darknet.yml --infer_img=../../dog2.png -o weights=https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar
   
In [34]
%matplotlib inlineimport matplotlib.pyplot as plt 
import cv2

infer_img = cv2.imread("output/dog2.png")
plt.figure(figsize=(15,10))
plt.imshow(cv2.cvtColor(infer_img, cv2.COLOR_BGR2RGB))
plt.show()
       
               

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

706

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

624

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

734

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

616

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1234

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

573

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

694

2023.08.11

苹果官网入口直接访问
苹果官网入口直接访问

苹果官网直接访问入口是https://www.apple.com/cn/,该页面具备0.8秒首屏渲染、HTTP/3与Brotli加速、WebP+AVIF双格式图片、免登录浏览全参数等特性。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

10

2025.12.24

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

相关下载

更多

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.4万人学习

SciPy 教程
SciPy 教程

共10课时 | 0.9万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号