0

0

【飞桨论文复现赛-小样本学习】FSL-Baseline

P粉084495128

P粉084495128

发布时间:2025-07-28 09:33:25

|

904人浏览过

|

来源于php中文网

原创

该复现项目针对《A Closer Look at Few-shot Classification》论文,基于paddlepaddle-gpu2.2.2和python3.7,在miniImageNet数据集上完成。复现的5-way 1-shot和5-shot准确率略超论文。介绍了论文的小样本分类研究、基准模型等,还说明了数据集、运行步骤及代码结构。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

【飞桨论文复现赛-小样本学习】fsl-baseline - php中文网

一、前言

本项目为百度论文复现赛《A Closer Look at Few-shot Classification》论文复现代码。

依赖环境:

  • paddlepaddle-gpu2.2.2
  • python3.7

在miniImageNet数据集下训练和测试。

5-way Acc:


1-shot 5-shot
论文 48.2% 66.4%
复现 48.3% 66.6%

二、模型背景及其介绍

参考论文:《A Closer Look at Few-shot Classification》论文链接

小样本分类旨在通过有限标记样例学习一个分类器来识别未知类,虽然近些年取得了一些重要的研究进展,但各方法网络结构、元学习算法的复杂性以及实现细节的差异为比较当前进展提出挑战。论文作者提出:

  1. 对几种代表性的小样本分类算法进行一致性比较分析,结果证明随着特征提取神经网络模型能力的提升,在给定领域差异的数据集上,各方法的性能差异显著缩小;

  2. 提出了一个基准模型,该模型在mini-ImageNet数据集和CUB数据集上的性能可以媲美几种SOTA方法;

  3. 提出了一种新的用于评估小样本分类算法跨领域泛化能力的实验设定,结果发现当特征提取神经网络能力较弱时,减少类内差异是提升模型性能的一个重要因素,当特征提取神经网络能力较强时,类内差异不再关键。

论文中提出的baseline模型遵循标准迁移学习的网络预训练以及微调。

  1. 训练阶段将图像输入到特征提取器中,再经过分类器进行分类。

  2. 微调阶段将训练好的模型参数固定在特征提取器中,然后重新训练一个分类器。

除Baseline模型外,论文还引入了Baseline模型的变体,Baseline++。Baseline++不同于前者的是在分类阶段采用了一个输入特征f(x)与权值矩阵的余弦相似度,然后根据这个相似度来进行softmax分类。 作者提出的Baseline和Baseline++模型如下图所示:

【飞桨论文复现赛-小样本学习】FSL-Baseline - php中文网        

参考项目地址

Timely
Timely

一款AI时间跟踪管理工具!

下载

复现github地址

三、数据集

2016年google DeepMind团队从Imagnet数据集中抽取的一小部分(大小约3GB)制作了Mini-Imagenet数据集,共有100个类别,每个类别都有600张图片,共60000张(都是.jpg结尾的文件)。

Mini-Imagenet数据集中还包含了train.csv、val.csv以及test.csv三个文件。

  • train.csv包含38400张图片,共64个类别。
  • val.csv包含9600张图片,共16个类别。
  • test.csv包含12000张图片,共20个类别。

每个csv文件之间的图像以及类别都是相互独立的,即共60000张图片,100个类。

四、运行

本项目5-way分类可设1-shot和5-shot。如果用5-shot可设置--n_shot 5,用1-shot可设置--n_shot 1。下面以5-shot为例。

解压miniImagenet数据集到./filelists目录下用于训练

In [1]
#加载miniImagenet数据集%cd /home/aistudio/work/Paddle-CLFS/filelists/
!unzip -oq /home/aistudio/data/data138415/miniImagenet.zip
       
/home/aistudio/work/Paddle-CLFS/filelists
       

1、训练

训练的模型保存在./record目录下

训练的日志保存在./logs目录下

In [ ]
%cd /home/aistudio/work/Paddle-CLFS/
!python3 train.py --n_shot 5
   

2、保存特征

将提取的特征保存在分类层之前,以提高测试速度。

加载./record目录下的模型进行特征保存

In [ ]
# 可加载预先训练好的模型文件到./record目录下%cd /home/aistudio/work/Paddle-CLFS/record/
!unzip -oq /home/aistudio/data/data140016/checkpoint_clfs.zip
   
In [ ]
%cd /home/aistudio/work/Paddle-CLFS/
!python3 save_features.py --n_shot 5
   

3、测试

测试之前执行!python3 save_features.py预先提取特征

这里展示5-shot测试结果

In [ ]
%cd /home/aistudio/work/Paddle-CLFS/
!python3 test.py --n_shot 5
   

五、代码结构

├─data # 数据处理包├─filelists # 数据文件├─methods # 模型方法├─logs # 训练日志├─record # 训练保存文件 │  backbone.py # 特征提取│  configs.py # 配置文件│  io_utils.py # 配置文件│  README.md # readme│  save_features.py # 保存特征│  train.py # 训练│  test.py # 测试
   

相关专题

更多
页面置换算法
页面置换算法

页面置换算法是操作系统中用来决定在内存中哪些页面应该被换出以便为新的页面提供空间的算法。本专题为大家提供页面置换算法的相关文章,大家可以免费体验。

389

2023.08.14

页面置换算法
页面置换算法

页面置换算法是操作系统中用来决定在内存中哪些页面应该被换出以便为新的页面提供空间的算法。本专题为大家提供页面置换算法的相关文章,大家可以免费体验。

389

2023.08.14

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

150

2025.12.31

php网站源码教程大全
php网站源码教程大全

本专题整合了php网站源码相关教程,阅读专题下面的文章了解更多详细内容。

88

2025.12.31

视频文件格式
视频文件格式

本专题整合了视频文件格式相关内容,阅读专题下面的文章了解更多详细内容。

90

2025.12.31

不受国内限制的浏览器大全
不受国内限制的浏览器大全

想找真正自由、无限制的上网体验?本合集精选2025年最开放、隐私强、访问无阻的浏览器App,涵盖Tor、Brave、Via、X浏览器、Mullvad等高自由度工具。支持自定义搜索引擎、广告拦截、隐身模式及全球网站无障碍访问,部分更具备防追踪、去谷歌化、双内核切换等高级功能。无论日常浏览、隐私保护还是突破地域限制,总有一款适合你!

61

2025.12.31

出现404解决方法大全
出现404解决方法大全

本专题整合了404错误解决方法大全,阅读专题下面的文章了解更多详细内容。

493

2025.12.31

html5怎么播放视频
html5怎么播放视频

想让网页流畅播放视频?本合集详解HTML5视频播放核心方法!涵盖<video>标签基础用法、多格式兼容(MP4/WebM/OGV)、自定义播放控件、响应式适配及常见浏览器兼容问题解决方案。无需插件,纯前端实现高清视频嵌入,助你快速打造现代化网页视频体验。

17

2025.12.31

关闭win10系统自动更新教程大全
关闭win10系统自动更新教程大全

本专题整合了关闭win10系统自动更新教程大全,阅读专题下面的文章了解更多详细内容。

12

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.7万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.0万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号