0

0

基于PaddleDetection卫星应用赛题——海上船舶智能检测

P粉084495128

P粉084495128

发布时间:2025-07-25 11:47:10

|

689人浏览过

|

来源于php中文网

原创

该赛题聚焦基于PaddleDetection的海上船舶智能检测,利用GF-3和哨兵1号卫星的SAR数据。数据集含256x256像素船舶切片及标注,需通过模型检测生成特定格式csv提交。流程包括数据预处理、用faster_rcnn_swin_tiny_fpn模型训练、预测,旨在探索针对性检测方法,助力领海安全等领域。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

基于paddledetection卫星应用赛题——海上船舶智能检测 - php中文网

基于PaddleDetection卫星应用赛题——海上船舶智能检测

一、赛题背景

基于海上船舶目标检测对于领海安全、渔业资源管理和海上运输与救援具有重要意义,但在天气和海浪等不可控自然因素的影响下,依靠派遣海警船或基于可见光数据进行船舶目标监测等手段往往难以有效开展。卫星合成孔径雷达(SAR)是一种全天时、全天候、多维度获取信息的主动式微波成像雷达,为海洋上多尺度的船舶检测提供了强有力的数据保障和技术支持,在遥感图像船舶检测领域占有重要地位。由于SAR的成像原理与光学相机存在很大的差别,如何利用SAR数据特性设计出一套具有针对性的船舶检测方法是一大难点。本赛题鼓励选手通过数据算法寻找这个难题的新颖解法,进一步推动海上船舶智能检测的发展。

二、赛题任务

通过PaddleDetection实现对海上船舶智能检测,通过数据算法寻找这个难题的新颖解法,进一步推动海上船舶智能检测的发展。 基于PaddleDetection卫星应用赛题——海上船舶智能检测 - php中文网        

三、数据集介绍

源数据为中国资源卫星应用中心提供的102景GF-3卫星数据及欧空局提供的108景哨兵1号卫星数据。标注数据由中国科学院空天信息创新研究院王超研究员团队制作和提供,通过对源数据进行幅度值生成,位深量化和灰度拉伸处理后,将原始16位复数数据加工为8位数字图像。通过裁剪和筛选,形成像素尺寸为256x256的船舶切片,并通过Labelme目标标注软件,为每一张船舶切片生成对应的船舶标注框信息文本。基于PaddleDetection卫星应用赛题——海上船舶智能检测 - php中文网        

四、提交实例

参赛者需要将所有模型检测结果放入一个csv文件中,命名为submission.csv,文件内容格式如下表所示: 每一行为一个待检测影像的信息和结果,其中第一列存储待检测的影像名称(不包含后缀名),第二列存储检测的垂直边框信息,具体边框信息格式为[目标矩形中心点相对横坐标 目标矩形中心点相对纵坐标 目标矩形相对长度比例 目标矩形相对宽度比例](数字间用英文空格隔开),如果有多个垂直边框,用英文的“;”将边框信息进行分离。基于PaddleDetection卫星应用赛题——海上船舶智能检测 - php中文网        

五、评分标准

基于PaddleDetection卫星应用赛题——海上船舶智能检测 - php中文网        

六、数据预处理

竞赛训练数据集中包括两类数据文件,第一类是.jpg格式的SAR影像文件,第二类是txt格式的船舶标注信息文本文件,两者通过相同的名称进行关联,名称命名规则可忽略。

  1. 下载数据集(训练集和测试集) 在比赛官网https://www.dcic-china.com/competitions/10022/datasets下载测试集和训练集

  2. 其次解压数据集 执行以下命令解压数据集,解压之后将压缩包删除,保证项目空间小于100G。否则项目会被终止。

In [ ]
# 1.安装依赖%cd work/PaddleDetection/
!pip install -r requirements.txt
!pip install paddlex
   
In [ ]
# 2.解压数据集%cd /home/aistudio/data/
!unzip data127873/training_dataset.zip!unzip data127874/test_dataset.zip!rm -rf data12*
   
In [13]
!mkdir Images
!mkdir txts
!cp -r train/*.jpg Images
!cp -r train/*.txt txts
   

3.数据格式转换 按上述目录结构整理数据之后,原始标签为.txt文件,需要转换为符合VOC规范的.xml文件,接下来进行标签格式转换。

Lovart
Lovart

全球首个AI设计智能体

下载

Step 1:修改txt2voc.py中的data_dir为数据集所在文件夹

In [41]
# 3.数据格式转换%cd ./train
!python text2voc.py
!cd ./train/ship_detect ./work/PaddleDetection/dataset
   

七、模型训练

1.利用PaddleDetection套件对检测目标模型进行训练,首先在https://gitee.com/PaddlePaddle/PaddleDetection.git 里,进行克隆,下载项目。基于PaddleDetection卫星应用赛题——海上船舶智能检测 - php中文网        

In [1]
# 1.下载PaddleDetection代码%cd ~/work/# 从Gitee上下载PaddleDetection代码!git clone https://gitee.com/PaddlePaddle/PaddleDetection.git -b develop# 若网速较慢,可使用如下方法下载# !git clone https://hub.fastgit.org/PaddlePaddle/PaddleDetection.git
       
/home/aistudio/work
正克隆到 'PaddleDetection'...
remote: Enumerating objects: 21396, done.
remote: Counting objects: 100% (1866/1866), done.
remote: Compressing objects: 100% (934/934), done.
remote: Total 21396 (delta 1313), reused 1300 (delta 929), pack-reused 19530
接收对象中: 100% (21396/21396), 202.22 MiB | 16.11 MiB/s, 完成.
处理 delta 中: 100% (15862/15862), 完成.
检查连接... 完成。
       

2.选用PaddleDetection中的目标检测模型,修改参数以及数据集路径,这里选用faster_rcnn_swin_tiny_fpn_3x_coco.yml对数据进行训练。 (1)修改work/PaddleDetection/configs/datasets/voc.yml中的voc数据集所在路径和num_classes。

metric: VOCmap_type: 11pointnum_classes: 2TrainDataset:
  !VOCDataSet
    dataset_dir: dataset/ship_detect
    anno_path: train_list.txt
    label_list: labels.txt
    data_fields: ['image', 'gt_bbox', 'gt_class', 'difficult']EvalDataset:
  !VOCDataSet
    dataset_dir: dataset/ship_detect
    anno_path: train_list.txt
    label_list: labels.txt
    data_fields: ['image', 'gt_bbox', 'gt_class', 'difficult']TestDataset:
  !ImageFolder
    anno_path: dataset/ship_detect/labels.txt
       

(2)修改work/PaddleDetection/configs/faster_rcnn/faster_rcnn_swin_tiny_fpn_1x_coco.yml中数据集格式

_BASE_: [  '../datasets/voc.yml',  '../runtime.yml',  '_base_/optimizer_swin_1x.yml',  '_base_/faster_rcnn_swin_tiny_fpn.yml',  '_base_/faster_rcnn_swin_reader.yml',
]
weights: output/faster_rcnn_swin_tiny_fpn_1x_coco/model_final
   
In [ ]
# 2.选用PaddleDetection中的目标检测模型,修改参数以及数据集路径,这里选用faster_rcnn_swin_tiny_fpn_3x_coco.yml对数据进行训练。%cd ~/work/PaddleDetection
!python3.7  ./tools/train.py -c ./configs/faster_rcnn/faster_rcnn_swin_tiny_fpn_3x_coco.yml
   

八、模型预测

将预测txt和jpg保存到/home/aistudio/test_a/

In [ ]
# 3.模型预测! cd PaddleDetection && python tools/infer.py -c ./configs/faster_rcnn/faster_rcnn_swin_tiny_fpn_3x_coco.yml --infer_dir=/home/aistudio/测试集/ --save_txt=True --output_dir=/home/aistudio/test_a/ > log.log
   
In [ ]
# 4.生成提交文件%cd ~/work/PaddleDetection/dataset/ship_detect/
!python submission.py
   

相关专题

更多
pdf怎么转换成xml格式
pdf怎么转换成xml格式

将 pdf 转换为 xml 的方法:1. 使用在线转换器;2. 使用桌面软件(如 adobe acrobat、itext);3. 使用命令行工具(如 pdftoxml)。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

1866

2024.04.01

xml怎么变成word
xml怎么变成word

步骤:1. 导入 xml 文件;2. 选择 xml 结构;3. 映射 xml 元素到 word 元素;4. 生成 word 文档。提示:确保 xml 文件结构良好,并预览 word 文档以验证转换是否成功。想了解更多xml的相关内容,可以阅读本专题下面的文章。

2084

2024.08.01

xml是什么格式的文件
xml是什么格式的文件

xml是一种纯文本格式的文件。xml指的是可扩展标记语言,标准通用标记语言的子集,是一种用于标记电子文件使其具有结构性的标记语言。想了解更多相关的内容,可阅读本专题下面的相关文章。

963

2024.11.28

go语言 数组和切片
go语言 数组和切片

本专题整合了go语言数组和切片的区别与含义,阅读专题下面的文章了解更多详细内容。

46

2025.09.03

自建git服务器
自建git服务器

git服务器是目前流行的分布式版本控制系统之一,可以让多人协同开发同一个项目。本专题为大家提供自建git服务器相关的各种文章、以及下载和课程。

637

2023.07.05

git和svn的区别
git和svn的区别

git和svn的区别:1、定义不同;2、模型类型不同;3、存储单元不同;4、是否拥有全局版本号;5、内容完整性不同;6、版本库不同;7、克隆目录速度不同;8、分支不同。php中文网为大家带来了git和svn的相关知识、以及相关文章等内容。

525

2023.07.06

git撤销提交的commit
git撤销提交的commit

Git是一个强大的版本控制系统,它提供了很多功能帮助开发人员有效地管理和控制代码的变更,本专题为大家提供git 撤销提交的commit相关的各种文章内容,供大家免费下载体验。

264

2023.07.24

git提交错误怎么撤回
git提交错误怎么撤回

git提交错误撤回的方法:git reset head^:撤回最后一次提交,恢复到提交前状态。git revert head:创建新提交,内容与之前提交相反。git reset :使用提交的 sha-1 哈希撤回指定提交。交互式舞台区:标记要撤回的特定更改,然后提交,排除已撤回更改。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

541

2024.04.09

java学习网站推荐汇总
java学习网站推荐汇总

本专题整合了java学习网站相关内容,阅读专题下面的文章了解更多详细内容。

3

2026.01.08

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.9万人学习

SciPy 教程
SciPy 教程

共10课时 | 1万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号