0

0

【CVPR2023】FasterNet:追逐更高FLOPS、更快的神经网络

P粉084495128

P粉084495128

发布时间:2025-07-25 11:09:13

|

1006人浏览过

|

来源于php中文网

原创

FasterNet聚焦于提升神经网络速度,指出仅减少FLOPs未必降低延迟,关键在于提高每秒浮点运算(FLOPS)。其提出部分卷积(PConv),减少冗余计算与内存访问。基于此构建的FasterNet在多设备上速度更快,且精度不俗,如微型版比MobileVit - XXS快数倍且精度更高,大型版准确率高且吞吐量提升。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

【cvpr2023】fasternet:追逐更高flops、更快的神经网络 - php中文网

FasterNet:追逐更高FLOPS、更快的神经网络

摘要

        为了设计快速神经网络,许多工作都集中在减少浮点运算的数量(FLOPs)上。 然而,我们观察到FLOPs的减少并不一定会导致延迟的类似程度的减少。 这主要源于低效率的每秒浮点运算(FLOPS)。 为了实现更快的网络,我们回顾了流行的操作,并证明如此低的FLOPS主要是由于操作频繁的内存访问,特别是深度卷积。 因此,我们提出了一种新的部分卷积(PConv),通过同时减少冗余计算和内存访问,可以更有效地提取空间特征。 在Ponv的基础上,我们进一步提出了FasterNet,这是一个新的神经网络家族,它在各种设备上获得了比其他网络更高的运行速度,而不影响各种视觉任务的准确性。 例如,在ImageNet1K上,我们的微型FasterNet-T0在GPU、CPU和ARM处理器上分别比MobileVit-XXS块3.1×、3.1×和2.5×,同时精度提高2.9%。 我们的大型FasterNet-L实现了令人印象深刻的83.5%的Top-1准确率,与新兴的Swin-B不相上下,同时在GPU上提高了49%的推断吞吐量,并在CPU上节省了42%的计算时间。

1. FasterNet

        本文思考了一个问题:怎样才能更快?之前的工作大多使用FLOPs来表示神经网络的快慢,但是某些操作(如DWConv)实际运行并不快,这主要是因为频繁的内存访问。本文提出了新的见解:设计一个低FLOPs高FLOPS的操作,这样可以加快网络运行速度。由此,本文作者提出了一个“T型”的卷积——PConv,主要思想是DWConv虽然FLOPs小,但是由于频繁的内存访问导致FLOPS也小。由于网络存在冗余通道,那我是不是可以设计一个网络只用一部分去做空间计算,作者就尝试了这一想法,发现效果非常好,速度快,精度高。具体的操作如图5所示:

【CVPR2023】FasterNet:追逐更高FLOPS、更快的神经网络 - php中文网        

        基于PConv和传统的分层Transformer,本文提出了一个新的网络架构——FasterNet,结构图如图4所示:

一览AI绘图
一览AI绘图

一览AI绘图是一览科技推出的AIGC作图工具,用AI灵感助力,轻松创作高品质图片

下载
【CVPR2023】FasterNet:追逐更高FLOPS、更快的神经网络 - php中文网        

2. 代码复现

2.1 下载并导入所需的库

In [ ]
!pip install paddlex
   
In [ ]
%matplotlib inlineimport paddleimport paddle.fluid as fluidimport numpy as npimport matplotlib.pyplot as pltfrom paddle.vision.datasets import Cifar10from paddle.vision.transforms import Transposefrom paddle.io import Dataset, DataLoaderfrom paddle import nnimport paddle.nn.functional as Fimport paddle.vision.transforms as transformsimport osimport matplotlib.pyplot as pltfrom matplotlib.pyplot import figureimport paddleximport mathimport itertools
   

2.2 创建数据集

In [3]
train_tfm = transforms.Compose([
    transforms.RandomResizedCrop(224),
    transforms.ColorJitter(brightness=0.2,contrast=0.2, saturation=0.2),
    transforms.RandomHorizontalFlip(0.5),
    transforms.RandomRotation(20),
    paddlex.transforms.MixupImage(),
    transforms.ToTensor(),
    transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
])

test_tfm = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
])
   
In [4]
paddle.vision.set_image_backend('cv2')# 使用Cifar10数据集train_dataset = Cifar10(data_file='data/data152754/cifar-10-python.tar.gz', mode='train', transform = train_tfm)
val_dataset = Cifar10(data_file='data/data152754/cifar-10-python.tar.gz', mode='test',transform = test_tfm)print("train_dataset: %d" % len(train_dataset))print("val_dataset: %d" % len(val_dataset))
       
train_dataset: 50000
val_dataset: 10000
       
In [5]
batch_size=256
   
In [6]
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=4)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, drop_last=False, num_workers=4)
   

2.3 模型的创建

2.3.1 标签平滑

In [7]
class LabelSmoothingCrossEntropy(nn.Layer):
    def __init__(self, smoothing=0.1):
        super().__init__()
        self.smoothing = smoothing    def forward(self, pred, target):

        confidence = 1. - self.smoothing
        log_probs = F.log_softmax(pred, axis=-1)
        idx = paddle.stack([paddle.arange(log_probs.shape[0]), target], axis=1)
        nll_loss = paddle.gather_nd(-log_probs, index=idx)
        smooth_loss = paddle.mean(-log_probs, axis=-1)
        loss = confidence * nll_loss + self.smoothing * smooth_loss        return loss.mean()
   

2.3.2 DropPath

In [8]
def drop_path(x, drop_prob=0.0, training=False):
    """
    Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
    """
    if drop_prob == 0.0 or not training:        return x
    keep_prob = paddle.to_tensor(1 - drop_prob)
    shape = (paddle.shape(x)[0],) + (1,) * (x.ndim - 1)
    random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype)
    random_tensor = paddle.floor(random_tensor)  # binarize
    output = x.divide(keep_prob) * random_tensor    return outputclass DropPath(nn.Layer):
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)
   

2.3.3 FasterNet模型的创建

In [9]
class PConv(nn.Layer):
    def __init__(self, dim, kernel_size=3, n_div=4):
        super().__init__()
        
        self.dim_conv = dim // n_div
        self.dim_untouched = dim - self.dim_conv

        self.conv = nn.Conv2D(self.dim_conv, self.dim_conv, kernel_size, padding=(kernel_size - 1) // 2, bias_attr=False)    def forward(self, x):
        
        x1, x2 = paddle.split(x, [self.dim_conv, self.dim_untouched], axis=1)
        x1 = self.conv(x1)
        x = paddle.concat([x1, x2], axis=1)        return x
   
In [10]
class FasterNetBlock(nn.Layer):
    def __init__(self, dim, expand_ratio=2, act_layer=nn.ReLU, drop_path_rate=0.0):
        super().__init__()

        self.pconv = PConv(dim)

        self.conv1 = nn.Conv2D(dim, dim * expand_ratio, 1, bias_attr=False)

        self.bn = nn.BatchNorm2D(dim * expand_ratio)
        self.act_layer = act_layer()

        self.conv2 = nn.Conv2D(dim * expand_ratio, dim, 1, bias_attr=False)

        self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()    def forward(self, x):
        residual = x

        x = self.pconv(x)
        x = self.conv1(x)
        x = self.bn(x)
        x = self.act_layer(x)
        x = self.conv2(x)

        x = residual + self.drop_path(x)        return x
   
In [11]
class FasterNet(nn.Layer):
    def __init__(self, in_channel=3, embed_dim=40, act_layer=nn.ReLU, num_classes=1000, depths=[1, 2, 8, 2], drop_path=0.0):
        super().__init__()

        self.stem = nn.Sequential(
            nn.Conv2D(in_channel, embed_dim, 4, stride=4, bias_attr=False),
            nn.BatchNorm2D(embed_dim),
            act_layer()
        )

        drop_path_list = [x.item() for x in paddle.linspace(0, drop_path, sum(depths))]

        self.feature = []
        embed_dim = embed_dim        for idx, depth in enumerate(depths):
            
            self.feature.append(nn.Sequential(
                *[FasterNetBlock(embed_dim, act_layer=act_layer, drop_path_rate=drop_path_list[sum(depths[:idx]) + i]) for i in range(depth)]
            ))            if idx < len(depths) - 1:
                self.feature.append(nn.Sequential(
                    nn.Conv2D(embed_dim, embed_dim * 2, 2, stride=2, bias_attr=False),
                    nn.BatchNorm2D(embed_dim * 2),
                    act_layer()
                ))

                embed_dim = embed_dim * 2
        
        self.feature = nn.Sequential(*self.feature)

        self.avg_pool = nn.AdaptiveAvgPool2D(1)
        
        self.conv1 = nn.Conv2D(embed_dim, 1280, 1, bias_attr=False)
        self.act_layer = act_layer()
        self.fc = nn.Linear(1280, num_classes)    def forward(self, x):
        x = self.stem(x)
        x = self.feature(x)
        
        x = self.avg_pool(x)
        x = self.conv1(x)
        x = self.act_layer(x)
        x = self.fc(x.flatten(1))        return x
   
In [12]
def fasternet_t0():
    num_classes=10
    embed_dim = 40
    depths = [1, 2, 8, 2]
    drop_path_rate = 0.0
    act_layer = nn.GELU    return FasterNet(embed_dim=embed_dim, act_layer=act_layer, num_classes=num_classes, depths=depths, drop_path=drop_path_rate)def fasternet_t1():
    num_classes=10
    embed_dim = 64
    depths = [1, 2, 8, 2]
    drop_path_rate = 0.02
    act_layer = nn.GELU    return FasterNet(embed_dim=embed_dim, act_layer=act_layer, num_classes=num_classes, depths=depths, drop_path=drop_path_rate)def fasternet_t2():
    num_classes=10
    embed_dim = 96
    depths = [1, 2, 8, 2]
    drop_path_rate = 0.05
    act_layer = nn.ReLU    return FasterNet(embed_dim=embed_dim, act_layer=act_layer, num_classes=num_classes, depths=depths, drop_path=drop_path_rate)def fasternet_s():
    num_classes=10
    embed_dim = 128
    depths = [1, 2, 13, 2]
    drop_path_rate = 0.03
    act_layer = nn.ReLU    return FasterNet(embed_dim=embed_dim, act_layer=act_layer, num_classes=num_classes, depths=depths, drop_path=drop_path_rate)def fasternet_m():
    num_classes=10
    embed_dim = 144
    depths = [3, 4, 18, 3]
    drop_path_rate = 0.05
    act_layer = nn.ReLU    return FasterNet(embed_dim=embed_dim, act_layer=act_layer, num_classes=num_classes, depths=depths, drop_path=drop_path_rate)def fasternet_l():
    num_classes=10
    embed_dim = 192
    depths = [3, 4, 18, 3]
    drop_path_rate = 0.05
    act_layer = nn.ReLU    return FasterNet(embed_dim=embed_dim, act_layer=act_layer, num_classes=num_classes, depths=depths, drop_path=drop_path_rate)
   

2.3.4 模型的参数

In [ ]
model = fasternet_t0()
paddle.summary(model, (1, 3, 224, 224))
   

【CVPR2023】FasterNet:追逐更高FLOPS、更快的神经网络 - php中文网        

In [ ]
model = fasternet_t1()
paddle.summary(model, (1, 3, 224, 224))
   

【CVPR2023】FasterNet:追逐更高FLOPS、更快的神经网络 - php中文网        

In [ ]
model = fasternet_t2()
paddle.summary(model, (1, 3, 224, 224))
   

【CVPR2023】FasterNet:追逐更高FLOPS、更快的神经网络 - php中文网        

In [ ]
model = fasternet_s()
paddle.summary(model, (1, 3, 224, 224))
   

【CVPR2023】FasterNet:追逐更高FLOPS、更快的神经网络 - php中文网        

In [ ]
model = fasternet_m()
paddle.summary(model, (1, 3, 224, 224))
   

【CVPR2023】FasterNet:追逐更高FLOPS、更快的神经网络 - php中文网        

In [ ]
model = fasternet_l()
paddle.summary(model, (1, 3, 224, 224))
   

【CVPR2023】FasterNet:追逐更高FLOPS、更快的神经网络 - php中文网        

2.4 训练

In [19]
learning_rate = 0.001n_epochs = 100paddle.seed(42)
np.random.seed(42)
   
In [ ]
work_path = 'work/model'# FasterNet-T0model = fasternet_t0()

criterion = LabelSmoothingCrossEntropy()

scheduler = paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=learning_rate, T_max=50000 // batch_size * n_epochs, verbose=False)
optimizer = paddle.optimizer.AdamW(parameters=model.parameters(), learning_rate=scheduler, weight_decay=0.005)

gate = 0.0threshold = 0.0best_acc = 0.0val_acc = 0.0loss_record = {'train': {'loss': [], 'iter': []}, 'val': {'loss': [], 'iter': []}}   # for recording lossacc_record = {'train': {'acc': [], 'iter': []}, 'val': {'acc': [], 'iter': []}}      # for recording accuracyloss_iter = 0acc_iter = 0for epoch in range(n_epochs):    # ---------- Training ----------
    model.train()
    train_num = 0.0
    train_loss = 0.0

    val_num = 0.0
    val_loss = 0.0
    accuracy_manager = paddle.metric.Accuracy()
    val_accuracy_manager = paddle.metric.Accuracy()    print("#===epoch: {}, lr={:.10f}===#".format(epoch, optimizer.get_lr()))    for batch_id, data in enumerate(train_loader):
        x_data, y_data = data
        labels = paddle.unsqueeze(y_data, axis=1)

        logits = model(x_data)

        loss = criterion(logits, y_data)

        acc = paddle.metric.accuracy(logits, labels)
        accuracy_manager.update(acc)        if batch_id % 10 == 0:
            loss_record['train']['loss'].append(loss.numpy())
            loss_record['train']['iter'].append(loss_iter)
            loss_iter += 1

        loss.backward()

        optimizer.step()
        scheduler.step()
        optimizer.clear_grad()
        
        train_loss += loss
        train_num += len(y_data)

    total_train_loss = (train_loss / train_num) * batch_size
    train_acc = accuracy_manager.accumulate()
    acc_record['train']['acc'].append(train_acc)
    acc_record['train']['iter'].append(acc_iter)
    acc_iter += 1
    # Print the information.
    print("#===epoch: {}, train loss is: {}, train acc is: {:2.2f}%===#".format(epoch, total_train_loss.numpy(), train_acc*100))    # ---------- Validation ----------
    model.eval()    for batch_id, data in enumerate(val_loader):

        x_data, y_data = data
        labels = paddle.unsqueeze(y_data, axis=1)        with paddle.no_grad():
          logits = model(x_data)

        loss = criterion(logits, y_data)

        acc = paddle.metric.accuracy(logits, labels)
        val_accuracy_manager.update(acc)

        val_loss += loss
        val_num += len(y_data)

    total_val_loss = (val_loss / val_num) * batch_size
    loss_record['val']['loss'].append(total_val_loss.numpy())
    loss_record['val']['iter'].append(loss_iter)
    val_acc = val_accuracy_manager.accumulate()
    acc_record['val']['acc'].append(val_acc)
    acc_record['val']['iter'].append(acc_iter)    
    print("#===epoch: {}, val loss is: {}, val acc is: {:2.2f}%===#".format(epoch, total_val_loss.numpy(), val_acc*100))    # ===================save====================
    if val_acc > best_acc:
        best_acc = val_acc
        paddle.save(model.state_dict(), os.path.join(work_path, 'best_model.pdparams'))
        paddle.save(optimizer.state_dict(), os.path.join(work_path, 'best_optimizer.pdopt'))print(best_acc)
paddle.save(model.state_dict(), os.path.join(work_path, 'final_model.pdparams'))
paddle.save(optimizer.state_dict(), os.path.join(work_path, 'final_optimizer.pdopt'))
   

【CVPR2023】FasterNet:追逐更高FLOPS、更快的神经网络 - php中文网        

2.5 结果分析

In [21]
def plot_learning_curve(record, title='loss', ylabel='CE Loss'):
    ''' Plot learning curve of your CNN '''
    maxtrain = max(map(float, record['train'][title]))
    maxval = max(map(float, record['val'][title]))
    ymax = max(maxtrain, maxval) * 1.1
    mintrain = min(map(float, record['train'][title]))
    minval = min(map(float, record['val'][title]))
    ymin = min(mintrain, minval) * 0.9

    total_steps = len(record['train'][title])
    x_1 = list(map(int, record['train']['iter']))
    x_2 = list(map(int, record['val']['iter']))
    figure(figsize=(10, 6))
    plt.plot(x_1, record['train'][title], c='tab:red', label='train')
    plt.plot(x_2, record['val'][title], c='tab:cyan', label='val')
    plt.ylim(ymin, ymax)
    plt.xlabel('Training steps')
    plt.ylabel(ylabel)
    plt.title('Learning curve of {}'.format(title))
    plt.legend()
    plt.show()
   
In [22]
plot_learning_curve(loss_record, title='loss', ylabel='CE Loss')
       
               
In [23]
plot_learning_curve(acc_record, title='acc', ylabel='Accuracy')
       
               
In [24]
import time
work_path = 'work/model'model = fasternet_t0()
model_state_dict = paddle.load(os.path.join(work_path, 'best_model.pdparams'))
model.set_state_dict(model_state_dict)
model.eval()
aa = time.time()for batch_id, data in enumerate(val_loader):

    x_data, y_data = data
    labels = paddle.unsqueeze(y_data, axis=1)    with paddle.no_grad():
        logits = model(x_data)
bb = time.time()print("Throughout:{}".format(int(len(val_dataset)//(bb - aa))))
       
Throughout:982
       
In [25]
def get_cifar10_labels(labels):  
    """返回CIFAR10数据集的文本标签。"""
    text_labels = [        'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog',        'horse', 'ship', 'truck']    return [text_labels[int(i)] for i in labels]
   
In [26]
def show_images(imgs, num_rows, num_cols, pred=None, gt=None, scale=1.5):  
    """Plot a list of images."""
    figsize = (num_cols * scale, num_rows * scale)
    _, axes = plt.subplots(num_rows, num_cols, figsize=figsize)
    axes = axes.flatten()    for i, (ax, img) in enumerate(zip(axes, imgs)):        if paddle.is_tensor(img):
            ax.imshow(img.numpy())        else:
            ax.imshow(img)
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)        if pred or gt:
            ax.set_title("pt: " + pred[i] + "\ngt: " + gt[i])    return axes
   
In [27]
work_path = 'work/model'X, y = next(iter(DataLoader(val_dataset, batch_size=18)))
model = fasternet_t0()
model_state_dict = paddle.load(os.path.join(work_path, 'best_model.pdparams'))
model.set_state_dict(model_state_dict)
model.eval()
logits = model(X)
y_pred = paddle.argmax(logits, -1)
X = paddle.transpose(X, [0, 2, 3, 1])
axes = show_images(X.reshape((18, 224, 224, 3)), 1, 18, pred=get_cifar10_labels(y_pred), gt=get_cifar10_labels(y))
plt.show()
       
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
       
               
In [ ]
!pip install interpretdl
   
In [29]
import interpretdl as it
   
In [30]
work_path = 'work/model'model = fasternet_t0()
model_state_dict = paddle.load(os.path.join(work_path, 'best_model.pdparams'))
model.set_state_dict(model_state_dict)
   
In [31]
X, y = next(iter(DataLoader(val_dataset, batch_size=18)))
lime = it.LIMECVInterpreter(model)
   
In [32]
lime_weights = lime.interpret(X.numpy()[3], interpret_class=y.numpy()[3], batch_size=100, num_samples=10000, visual=True)
       
100%|██████████| 10000/10000 [00:46<00:00, 212.97it/s]
       
               

3. 对比实验

Model Val Acc Speed
FasterNet 92.8% 982
- PConv +DWConv 93.2% 580

对比实验见DWConv.ipynb

总结

        FasterNet从FLOPs和FLOPS两个角度重新审视卷积操作对于神经网络的影响,提出了新的神经网络家族——FasterNet。FasterNet不仅速度快,准确率也高。

相关专题

更多
php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

150

2025.12.31

php网站源码教程大全
php网站源码教程大全

本专题整合了php网站源码相关教程,阅读专题下面的文章了解更多详细内容。

88

2025.12.31

视频文件格式
视频文件格式

本专题整合了视频文件格式相关内容,阅读专题下面的文章了解更多详细内容。

90

2025.12.31

不受国内限制的浏览器大全
不受国内限制的浏览器大全

想找真正自由、无限制的上网体验?本合集精选2025年最开放、隐私强、访问无阻的浏览器App,涵盖Tor、Brave、Via、X浏览器、Mullvad等高自由度工具。支持自定义搜索引擎、广告拦截、隐身模式及全球网站无障碍访问,部分更具备防追踪、去谷歌化、双内核切换等高级功能。无论日常浏览、隐私保护还是突破地域限制,总有一款适合你!

61

2025.12.31

出现404解决方法大全
出现404解决方法大全

本专题整合了404错误解决方法大全,阅读专题下面的文章了解更多详细内容。

493

2025.12.31

html5怎么播放视频
html5怎么播放视频

想让网页流畅播放视频?本合集详解HTML5视频播放核心方法!涵盖<video>标签基础用法、多格式兼容(MP4/WebM/OGV)、自定义播放控件、响应式适配及常见浏览器兼容问题解决方案。无需插件,纯前端实现高清视频嵌入,助你快速打造现代化网页视频体验。

16

2025.12.31

关闭win10系统自动更新教程大全
关闭win10系统自动更新教程大全

本专题整合了关闭win10系统自动更新教程大全,阅读专题下面的文章了解更多详细内容。

12

2025.12.31

阻止电脑自动安装软件教程
阻止电脑自动安装软件教程

本专题整合了阻止电脑自动安装软件教程,阅读专题下面的文章了解更多详细教程。

5

2025.12.31

html5怎么使用
html5怎么使用

想快速上手HTML5开发?本合集为你整理最实用的HTML5使用指南!涵盖HTML5基础语法、主流框架(如Bootstrap、Vue、React)集成方法,以及无需安装、直接在线编辑运行的平台推荐(如CodePen、JSFiddle)。无论你是新手还是进阶开发者,都能轻松掌握HTML5网页制作、响应式布局与交互功能开发,零配置开启高效前端编程之旅!

2

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.7万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.0万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号