0

0

使用Python进行数据导入、读取及简单线性回归

聖光之護

聖光之護

发布时间:2025-07-16 18:04:02

|

1092人浏览过

|

来源于php中文网

原创

使用python进行数据导入、读取及简单线性回归

本文档旨在指导读者如何使用Python导入和读取Excel数据集,并在此基础上进行简单的线性回归分析。我们将使用pandas库读取数据,并使用statsmodels库进行线性回归。通过本文,你将学习到数据导入、数据预处理和简单线性回归的基本流程。

1. 数据导入与读取

首先,我们需要导入必要的Python库:pandas用于数据读取和处理,statsmodels.formula.api用于线性回归分析。

import pandas as pd
import statsmodels.formula.api as smf

接下来,使用pandas的read_excel()函数读取Excel文件。确保你已经安装了pandas库。如果没有,可以使用pip install pandas进行安装。

excel_file_path = "/Users/zeinabhassano/Documents/Master's_thesis/Gender Inequality/Labor data/ILO modelled estimates/updated/employment by sex and age - ilo modelled estimates (thousands) - annual.xlsx"  # 替换为你的文件路径
df = pd.read_excel(excel_file_path)

print(df.head())  # 打印前几行数据,检查是否正确读取

注意事项:

立即学习Python免费学习笔记(深入)”;

知了追踪
知了追踪

AI智能信息助手,智能追踪你的兴趣资讯

下载
  • 请将excel_file_path替换为你实际的文件路径。
  • 如果Excel文件包含多个sheet,可以使用sheet_name参数指定要读取的sheet。例如:df = pd.read_excel(excel_file_path, sheet_name='Sheet1')。
  • 如果遇到文件路径错误或其他读取问题,请检查文件路径是否正确,以及是否具有读取权限。

2. 数据预处理

在进行线性回归之前,通常需要对数据进行预处理。在本例中,我们需要创建一个虚拟变量(dummy variable)来表示性别。假设你的数据集中有一列名为Sex,其中男性表示为Male,女性表示为Female。我们可以创建一个新的列IsMale,当Sex为Male时,IsMale为1,否则为0。

# 假设数据集中有一列名为'Sex',值为'Male'或'Female'
df['IsMale'] = df['Sex'].apply(lambda x: 1 if x == 'Male' else 0)

print(df.head()) # 检查新的虚拟变量是否创建成功

注意事项:

立即学习Python免费学习笔记(深入)”;

  • 请根据你的实际数据集修改列名Sex。
  • 如果你的性别表示方式不同,请相应地修改lambda函数。
  • 根据实际情况,可能还需要处理缺失值、异常值等。

3. 简单线性回归

现在,我们可以使用statsmodels进行简单的线性回归。假设我们要预测就业值(Employment),自变量为IsMale。

# 使用statsmodels进行线性回归
model = smf.ols("Employment ~ IsMale", data=df)
results = model.fit()

print(results.summary())

代码解释:

  • smf.ols("Employment ~ IsMale", data=df):定义线性回归模型,Employment为因变量,IsMale为自变量。
  • results = model.fit():拟合模型。
  • print(results.summary()):打印回归结果,包括系数、标准误差、p值等。

结果解读:

results.summary()会输出回归结果的详细信息,包括:

  • Coefficients (系数): IsMale的系数表示男性相对于女性的就业差异。
  • Std. Error (标准误差): 系数的标准误差,用于衡量系数估计的精度。
  • t (t值): 用于检验系数是否显著不为0。
  • P>|t| (p值): 用于判断系数是否显著。如果p值小于0.05,则认为系数在统计上是显著的。
  • R-squared (R方): 衡量模型对数据的拟合程度。R方越接近1,表示模型拟合得越好。

4. 总结

本文档介绍了如何使用Python导入和读取Excel数据集,并进行简单的线性回归分析。我们使用了pandas库读取数据,并使用statsmodels库进行线性回归。通过这些步骤,你可以分析性别对就业的影响。

总结:

  • 使用pandas的read_excel()函数读取Excel数据。
  • 使用虚拟变量(dummy variable)处理分类变量。
  • 使用statsmodels进行线性回归分析,并解读回归结果。

希望这个教程对你有所帮助!

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

715

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

625

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

739

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1235

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

575

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

699

2023.08.11

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

7

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.6万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.0万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号