0

0

2023 黑客松获奖作品:基于OpenVINO与PaddleOCR的输出抄表器

P粉084495128

P粉084495128

发布时间:2025-07-16 11:38:48

|

498人浏览过

|

来源于php中文网

原创

本文介绍一种无需额外训练的自动化抄表方案,通过人工智能技术解决人工抄表费事、易出错的问题。该方案先配置图片屏幕区域坐标并预处理,再配置待识别元素坐标并裁剪,利用OpenVINO加载PaddleOCR模型识别文字,经结构化输出与后处理得到结果,无需大量贴合业务场景的数据集,适用于内容为文字的规整“表”。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

2023 黑客松获奖作品:基于openvino与paddleocr的输出抄表器 - php中文网

背景介绍

“表”是生活中的随处可见的一种设备。常见的“表”包括了家用电表,水表等设备;除此之外,还有工频场强计等“表”。受制于由于受到区域因素以及技术因素的制约,并非每种“表”都能够进行数据的自动采集,从而只能通过人工手动抄表。这种数据采集工作一方面较为费事和枯燥,另一方面,长时间工作带来的会导致工作人员疲劳,从而产生抄录错误。通过人工智能技术构造自动化的抄表流程能够极大的克服上述问题,提高工作效率。

相关工作

迄今为止,已经有许多关于电表读数的优秀项目出现,这些项目大都依赖于对特定场景的模型训练(包括微调)。

例如:

  • 【PaddlePaddle+OpenVINO】电表检测识别模型的部署
  • OpenVINO meter reader

但对于抄表工作的业务场景而言,具有以下特点:

  1. 无法准备大量的彻底贴合业务场景的数据集。
  2. 待抄录的“表”中的内容是文字,而非进度条或仪表盘
  3. 基于开放数据训练得到的OCR模型能够识别到“表”中的内容

因而,对于一些较为规整的“表”,我们完全可以基于开源OCR模型进行零微调的抄表工作。

技术方案

本项目提供了有一种无需额外训练的抄表器,只需要人为指定一些和布局有关的配置信息,即可实现表中数据的记录。总体流程如下:

  1. 配置图片中屏幕区域的坐标值。(这些坐标值也可以通过cv2的拐点检测或深度学习进行获取)
  2. 对图片进行预处理(仿射变换)
  3. 配置待识别的元素对应的坐标,并裁剪对应的区域。
  4. 如有需要,可以对裁剪下来的区域进行预处理。
  5. 基于OpenVINO进行文字识别。
  6. 结构化输出信息
  7. 如有需要,对输出结果进行进一步精炼。

2023 黑客松获奖作品:基于OpenVINO与PaddleOCR的输出抄表器 - php中文网

目录

  1. 背景介绍
  2. 图片预处理
  3. 基于OpenVINO加载PaddleOCR识别模型进行预测
  4. 结构化输出与后处理

图片预处理

由于本项目是一个零微调的项目,因此,为了保证识别模型的有效性,需要人工对齐输入信息。

  • 修正倾斜的图片,将图片中的屏幕区域修正到指定的大小
  • 根据从说明书等地方获取到的设备信息,设定待识别的区域在屏幕上的布局。

修正图片

以下列图片为例,本节展示如何将图片从倾斜的状态,修正为正面观众的状态。

2023 黑客松获奖作品:基于OpenVINO与PaddleOCR的输出抄表器 - php中文网
In [3]
# 配置坐标信息# The coordinates of the corners of the screen in case 1POINTS = [[1121, 56],    # Left top
          [3242, 183],   # right top
          [3040, 1841],  # right bottom
          [1000, 1543]]   # left bottom# The size of the screen in case 1DESIGN_SHAPE = (1300, 1000)
In [5]
import cv2 
import numpy as np# 定义仿射变换函数def pre_processing(img, point_list, target_shape):
    """
    Preprocessing function for normalizing skewed images.
    Parameters:
        img (np.ndarray): Input image.
        point_list (List[List[int, int], List[int, int], List[int, int]]): Coordinates of the corners of the screen.
        target_shape (Tuple(int, int)): The design shape.
    """
    
    # affine transformations
    # point list is the coordinates of the corners of the screen
    # target shape is the design shape
    
    target_w, target_h = target_shape
    pts1 = np.float32(point_list)
    pts2 = np.float32([[0, 0],[target_w,0],[target_w, target_h],[0,target_h]])
    
    M = cv2.getPerspectiveTransform(pts1, pts2)
    img2 = cv2.warpPerspective(img, M, (target_w,target_h))    return img2
In [6]
import matplotlib.pyplot as plt# 执行预处理img = cv2.imread('example1.jpg')# affine transformations to normalize skewed imagesimg = pre_processing(img, POINTS, DESIGN_SHAPE)# The screen part is cropped and correctedplt.imshow(img)

基于OpenVINO加载PaddleOCR识别模型进行预测

文字识别模型(PaddleOCR)

PaddleOCR 是PaddlePaddle的文字识别套件。迄今为止,PaddleOCR已经提供了许多复用性强的预训练模型。在本项目中使用的预训练模型是Chinese and English ultra-lightweight PP-OCR model (9.4M)。更多的信息请参考PaddleOCR Github或PaddleOCR Gitee。

一个标准的OCR流程包括了文字检测和文字识别,对于本项目来说,文字检测工作已经通过人工配置的方式解决了,因此,只需要进行文字识别即可。

Batch GPT
Batch GPT

使用AI批量处理数据、自动执行任务

下载

OpenVINO简介

OpenVINO作为Intel原生的深度学习推理框架,可以最大化的提升人工智能神经网络在Intel平台上的执行性能,实现一次编写,任意部署的开发体验。OpenVINO在2022.1版本后,就可以直接支持飞桨模型,大大提升了模型在Intel异构硬件上的推理性能与部署便捷性,带来更高的生产效率,更广阔的兼容性以及推理性能的优化。

2023 黑客松获奖作品:基于OpenVINO与PaddleOCR的输出抄表器 - php中文网

获取模型

In [ ]
! wget "https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar"! tar -xvf ch_PP-OCRv3_rec_infer.tar

基于OpenVINO加载PaddleOCR

使用OpenVINO加载Paddle模型无需经过任何转换,只需要

  1. 创建环境
  2. 读取模型
  3. 生成推理接口
In [ ]
! pip install openvino
In [11]
from openvino.runtime import Core# Initialize OpenVINO Runtime for text recognition.core = Core()# Read the model and corresponding weights from a file.rec_model_file_path = "ch_PP-OCRv3_rec_infer/inference.pdmodel"rec_model = core.read_model(model=rec_model_file_path)# Assign dynamic shapes to every input layer on the last dimension.for input_layer in rec_model.inputs:
    input_shape = input_layer.partial_shape
    input_shape[3] = -1
    rec_model.reshape({input_layer: input_shape})

rec_compiled_model = core.compile_model(model=rec_model, device_name="CPU")# Get input and output nodes.rec_input_layer = rec_compiled_model.input(0)
rec_output_layer = rec_compiled_model.output(0)

文字识别

依旧对于上述示例图片,希望结构化输出以下内容:[{"Info_Probe":""}, {"Freq_Set":""}, {"Freq_Main":""}, {"Val_Total":""},{"Val_X":""}, {"Val_Y":""}, {"Val_Z":""}, {"Unit":""}, {"Field":""}]。输出示例如下图所示:

2023 黑客松获奖作品:基于OpenVINO与PaddleOCR的输出抄表器 - php中文网

配置布局

首先,需要基于仿射变换的结果,配置各个元素在图片上的布局。这个配置对于同一批表来说是固定的。

In [13]
# features and layout informationDESIGN_LAYOUT = {'Info_Probe':[14, 36, 410, 135],  # feature_name, xmin, ymin, xmax, ymax
                 'Freq_Set':[5, 290, 544, 406], 
                 'Val_Total':[52, 419, 1256, 741], 
                 'Val_X':[19, 774, 433, 882], 
                 'Val_Y':[433, 773, 874, 884], 
                 'Val_Z':[873, 773, 1276, 883], 
                 'Unit':[1064, 291, 1295, 403], 
                 'Field':[5, 913, 243, 998]}

文字识别的预处理函数

In [18]
import copyimport math# Preprocess for text recognition.def resize_norm_img(img, max_wh_ratio):
    """
    Resize input image for text recognition

    Parameters:
        img: image with bounding box from text detection 
        max_wh_ratio: ratio of image scaling
    """
    rec_image_shape = [3, 48, 320]
    imgC, imgH, imgW = rec_image_shape    assert imgC == img.shape[2]
    character_type = "ch"
    if character_type == "ch":
        imgW = int((32 * max_wh_ratio))
    h, w = img.shape[:2]
    ratio = w / float(h)    if math.ceil(imgH * ratio) > imgW:
        resized_w = imgW    else:
        resized_w = int(math.ceil(imgH * ratio))
    resized_image = cv2.resize(img, (resized_w, imgH))
    resized_image = resized_image.astype('float32')
    resized_image = resized_image.transpose((2, 0, 1)) / 255
    resized_image -= 0.5
    resized_image /= 0.5
    padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
    padding_im[:, :, 0:resized_w] = resized_image    return padding_imdef get_rotate_crop_image(img, points):
    '''
    img_height, img_width = img.shape[0:2]
    left = int(np.min(points[:, 0]))
    right = int(np.max(points[:, 0]))
    top = int(np.min(points[:, 1]))
    bottom = int(np.max(points[:, 1]))
    img_crop = img[top:bottom, left:right, :].copy()
    points[:, 0] = points[:, 0] - left
    points[:, 1] = points[:, 1] - top
    '''
    assert len(points) == 4, "shape of points must be 4*2"
    img_crop_width = int(        max(
            np.linalg.norm(points[0] - points[1]),
            np.linalg.norm(points[2] - points[3])))
    img_crop_height = int(        max(
            np.linalg.norm(points[0] - points[3]),
            np.linalg.norm(points[1] - points[2])))
    pts_std = np.float32([[0, 0], [img_crop_width, 0],
                          [img_crop_width, img_crop_height],
                          [0, img_crop_height]])
    M = cv2.getPerspectiveTransform(points, pts_std)
    dst_img = cv2.warpPerspective(
        img,
        M, (img_crop_width, img_crop_height),
        borderMode=cv2.BORDER_REPLICATE,
        flags=cv2.INTER_CUBIC)
    dst_img_height, dst_img_width = dst_img.shape[0:2]    if dst_img_height * 1.0 / dst_img_width >= 1.5:
        dst_img = np.rot90(dst_img)    return dst_imgdef prep_for_rec(dt_boxes, frame):
    """
    Preprocessing of the detected bounding boxes for text recognition

    Parameters:
        dt_boxes: detected bounding boxes from text detection 
        frame: original input frame 
    """
    ori_im = frame.copy()
    img_crop_list = [] 
    for bno in range(len(dt_boxes)):
        tmp_box = copy.deepcopy(dt_boxes[bno])
        img_crop = get_rotate_crop_image(ori_im, tmp_box)
        img_crop_list.append(img_crop)
        
    img_num = len(img_crop_list)    # Calculate the aspect ratio of all text bars.
    width_list = []    for img in img_crop_list:
        width_list.append(img.shape[1] / float(img.shape[0]))    
    # Sorting can speed up the recognition process.
    indices = np.argsort(np.array(width_list))    return img_crop_list, img_num, indicesdef batch_text_box(img_crop_list, img_num, indices, beg_img_no, batch_num):
    """
    Batch for text recognition

    Parameters:
        img_crop_list: processed bounding box images with detected bounding box
        img_num: number of bounding boxes from text detection
        indices: sorting for bounding boxes to speed up text recognition
        beg_img_no: the beginning number of bounding boxes for each batch of text recognition inference
        batch_num: number of images in each batch
    """
    norm_img_batch = []
    max_wh_ratio = 0
    end_img_no = min(img_num, beg_img_no + batch_num)    for ino in range(beg_img_no, end_img_no):
        h, w = img_crop_list[indices[ino]].shape[0:2]
        wh_ratio = w * 1.0 / h
        max_wh_ratio = max(max_wh_ratio, wh_ratio)    for ino in range(beg_img_no, end_img_no):
        norm_img = resize_norm_img(img_crop_list[indices[ino]], max_wh_ratio)
        norm_img = norm_img[np.newaxis, :]
        norm_img_batch.append(norm_img)

    norm_img_batch = np.concatenate(norm_img_batch)
    norm_img_batch = norm_img_batch.copy()    return norm_img_batch

文字识别的后处理函数

用于将文字识别的结果进行解码,转化为汉字

In [21]
class RecLabelDecode(object):
    """ Convert between text-label and text-index """

    def __init__(self,
                 character_dict_path=None,
                 character_type='ch',
                 use_space_char=False):
        support_character_type = [            'ch', 'en', 'EN_symbol', 'french', 'german', 'japan', 'korean',            'it', 'xi', 'pu', 'ru', 'ar', 'ta', 'ug', 'fa', 'ur', 'rs', 'oc',            'rsc', 'bg', 'uk', 'be', 'te', 'ka', 'chinese_cht', 'hi', 'mr',            'ne', 'EN', 'latin', 'arabic', 'cyrillic', 'devanagari'
        ]        assert character_type in support_character_type, "Only {} are supported now but get {}".format(
            support_character_type, character_type)

        self.beg_str = "sos"
        self.end_str = "eos"

        if character_type == "en":
            self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
            dict_character = list(self.character_str)        elif character_type == "EN_symbol":            # same with ASTER setting (use 94 char).
            self.character_str = string.printable[:-6]
            dict_character = list(self.character_str)        elif character_type in support_character_type:
            self.character_str = []            assert character_dict_path is not None, "character_dict_path should not be None when character_type is {}".format(
                character_type)            with open(character_dict_path, "rb") as fin:
                lines = fin.readlines()                for line in lines:
                    line = line.decode('utf-8').strip("\n").strip("\r\n")
                    self.character_str.append(line)            if use_space_char:
                self.character_str.append(" ")
            dict_character = list(self.character_str)        else:            raise NotImplementedError
        self.character_type = character_type
        dict_character = self.add_special_char(dict_character)
        self.dict = {}        for i, char in enumerate(dict_character):
            self.dict[char] = i
        self.character = dict_character        
    def __call__(self, preds, label=None, *args, **kwargs):
        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True)        if label is None:            return text
        label = self.decode(label)        return text, label    
    def add_special_char(self, dict_character):
        dict_character = ['blank'] + dict_character        return dict_character    
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        batch_size = len(text_index)        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []            for idx in range(len(text_index[batch_idx])):                if text_index[batch_idx][idx] in ignored_tokens:                    continue
                if is_remove_duplicate:                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])                else:
                    conf_list.append(1)
            text = ''.join(char_list)
            result_list.append((text, np.mean(conf_list)))        return result_list    
    def get_ignored_tokens(self):
        return [0]  # for ctc blank# Since the recognition results contain chinese words, we should use 'ch' as character_typetext_decoder = RecLabelDecode(character_dict_path="ppocr_keys_v1.txt",
                              character_type='ch',  
                              use_space_char=True)

基于OpenVINO进行文字识别

下面以Freq_Set为例,进行文字识别

In [25]
# 输出结构体struct_result = {} 

# Crop imgs according the layout informationxmin, ymin, xmax, ymax = DESIGN_LAYOUT['Freq_Set']
crop_img = img[ymin:ymax, xmin:xmax]

h = ymax - ymin  # height of crop_imgw = xmax - xmin  # width of crop_imgdt_boxes = [np.array([[0,0],[w,0],[w,h],[0,h]],dtype='float32')]
batch_num = 1# since the input img is cropped, we do not need a detection model to find the position of texts# Preprocess detection results for recognition.img_crop_list, img_num, indices = prep_for_rec(dt_boxes, crop_img)# txts are the recognized text resultsrec_res = [['', 0.0]] * img_num
txts = [] 

for beg_img_no in range(0, img_num):    # Recognition starts from here.
    norm_img_batch = batch_text_box(
        img_crop_list, img_num, indices, beg_img_no, batch_num)    # Run inference for text recognition. 
    rec_results = rec_compiled_model([norm_img_batch])[rec_output_layer]    # Postprocessing recognition results.
    rec_result = text_decoder(rec_results)    for rno in range(len(rec_result)):
        rec_res[indices[beg_img_no + rno]] = rec_result[rno]   
    if rec_res:
        txts = [rec_res[i][0] for i in range(len(rec_res))] 

# record the recognition resultstruct_result['Freq_Set'] = txts[0]print(txts[0])
100H2实时值

结构化输出与后处理

上面的逻辑已经完成了使用OpenVINO加载PaddleOCR并进行预测,但实际上由于整个模型没有进行微调,所以对于当前的业务场景来说可能不够完美,这个时候可以通过一些简单的逻辑进行处理,比如,对于示例图片中,H2必然是不存在的,这个地方可以直接通过replace替换为HZ。

简单来说,对于示例图片的这种表,可以定义如下后处理函数:

In [28]
# Post-processing, fix some error made in recognitiondef post_processing(results, post_configration):
    """
    Postprocessing function for correcting the recognition errors.
    Parameters:
        results (Dict): The result directory.
        post_configration (Dict): The configuration directory.
    """
    for key in results.keys():        if len(post_configration[key]) == 0:            continue  # nothing to do
        for post_item in post_configration[key]:
            key_word = post_item[0]            if key_word == 'MP':  # mapping
                source_word = post_item[1]
                target_word = post_item[2]                if source_word in results[key]:
                    results[key] = target_word            elif key_word == 'RP':  # removing
                source_word = post_item[1]
                target_word = post_item[2]
                results[key] = results[key].replace(source_word, target_word)            elif key_word == 'AD':  # add point
                add_position = post_item[1]
                results[key] = results[key][:add_position] + '.' + results[key][add_position:]    return results# 通过配置决定如何进行后处理# Congiguration for postprocessing of the resultsRESULT_POST = {"Info_Probe":[['MP', 'LF', '探头:LF-01']],  # words need to be mapped
               "Freq_Set":[['RP', '实时值', ''], ['RP', ' ', ''], ['RP', 'H2', 'HZ']],  # words need to be replace
               "Val_Total":[['RP', 'H2', 'Hz']],               "Val_X":[['RP', 'X', ''], ['RP', ':', '']], 
               "Val_Y":[['RP', 'Y', ''], ['RP', ':', '']], 
               "Val_Z":[['RP', 'Z', ''], ['RP', ':', '']], 
               "Unit":[['MP', 'T', 'μT'],['MP', 'kV', 'kV/m'],['MP', 'kv', 'kV/m'],['MP', 'vm', 'V/m'],['MP', 'Vm', 'V/m'],['MP', 'A', 'A/m']], 
               "Field":[]}  # nothing need to do# Postprocessing, to fix some error made in recognitionstruct_result = post_processing(struct_result, RESULT_POST)# Print resultprint(struct_result)
{'Freq_Set': '100HZ'}

全流程一键运行

为了方便运行,这里也提供了一个封装好的函数

In [32]
# 为了避免因为图片模糊导致的漏检,配置一个输出模板,从而让每个图片输出格式都一致# Output template in case 1RESULT_TEMP = {"Info_Probe":"探头:---", 
               "Freq_Set":"", 
               "Val_Total":"无探头", 
               "Val_X":"", 
               "Val_Y":"", 
               "Val_Z":"", 
               "Unit":"A/m", 
               "Field":"常规"}
In [33]
# the input of recognition should be image, DESIGN information, compiled_modeldef main_function(img, DESIGN_LAYOUT, RESULT_TEMP, preprocess_function=None):
    """
    Main program of processing the meter.
    Parameters:
        img (np.ndarray): Input image.
        DESIGN_LAYOUT (Dict): The coordinates of elements in the screen.
        RESULT_TEMP (Dict): The template for structure output.
        preprocess_function: The preprocess function for cropped images, `None` means no preprocessing to do.
    """
    # copy the structure output template
    struct_result = copy.deepcopy(RESULT_TEMP)    # structure recognition begins here
    for key in DESIGN_LAYOUT.keys():        # Crop imgs according the layout information
        xmin, ymin, xmax, ymax = DESIGN_LAYOUT[key]
        crop_img = img[ymin:ymax, xmin:xmax]        
        # preprocessing for cropped images
        if preprocess_function is not None:
            crop_img = preprocess_function(crop_img)
        
        h = ymax - ymin  # height of crop_img
        w = xmax - xmin  # width of crop_img
        dt_boxes = [np.array([[0,0],[w,0],[w,h],[0,h]],dtype='float32')]
        batch_num = 1

        # since the input img is cropped, we do not need a detection model to find the position of texts
        # Preprocess detection results for recognition.
        img_crop_list, img_num, indices = prep_for_rec(dt_boxes, crop_img)        # txts are the recognized text results
        rec_res = [['', 0.0]] * img_num
        txts = [] 

        for beg_img_no in range(0, img_num):            # Recognition starts from here.
            norm_img_batch = batch_text_box(
                img_crop_list, img_num, indices, beg_img_no, batch_num)            # Run inference for text recognition. 
            rec_results = rec_compiled_model([norm_img_batch])[rec_output_layer]            # Postprocessing recognition results.
            rec_result = text_decoder(rec_results)            for rno in range(len(rec_result)):
                rec_res[indices[beg_img_no + rno]] = rec_result[rno]   
            if rec_res:
                txts = [rec_res[i][0] for i in range(len(rec_res))] 

        # record the recognition result
        struct_result[key] = txts[0]        
    return struct_result
In [34]
img = cv2.imread('example1.jpg')# affine transformations to normalize skewed imagesimg = pre_processing(img, POINTS, DESIGN_SHAPE)

struct_result = main_function(img, DESIGN_LAYOUT, RESULT_TEMP)# Postprocessing, to fix some error made in recognitionstruct_result = post_processing(struct_result, RESULT_POST)# Print resultprint(struct_result)
{'Info_Probe': '探头:LF-01', 'Freq_Set': '100HZ', 'Val_Total': '734.57', 'Val_X': '734.53', 'Val_Y': '5.05', 'Val_Z': '5.48', 'Unit': 'V/m', 'Field': '电场'}

相关专题

更多
硬盘接口类型介绍
硬盘接口类型介绍

硬盘接口类型有IDE、SATA、SCSI、Fibre Channel、USB、eSATA、mSATA、PCIe等等。详细介绍:1、IDE接口是一种并行接口,主要用于连接硬盘和光驱等设备,它主要有两种类型:ATA和ATAPI,IDE接口已经逐渐被SATA接口;2、SATA接口是一种串行接口,相较于IDE接口,它具有更高的传输速度、更低的功耗和更小的体积;3、SCSI接口等等。

989

2023.10.19

PHP接口编写教程
PHP接口编写教程

本专题整合了PHP接口编写教程,阅读专题下面的文章了解更多详细内容。

50

2025.10.17

php8.4实现接口限流的教程
php8.4实现接口限流的教程

PHP8.4本身不内置限流功能,需借助Redis(令牌桶)或Swoole(漏桶)实现;文件锁因I/O瓶颈、无跨机共享、秒级精度等缺陷不适用高并发场景。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

207

2025.12.29

人工智能在生活中的应用
人工智能在生活中的应用

人工智能在生活中的应用有语音助手、无人驾驶、金融服务、医疗诊断、智能家居、智能推荐、自然语言处理和游戏设计等。本专题为大家提供人工智能相关的文章、下载、课程内容,供大家免费下载体验。

401

2023.08.17

人工智能的基本概念是什么
人工智能的基本概念是什么

人工智能的英文缩写为AI,是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学;该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

289

2024.01.09

人工智能不能取代人类的原因是什么
人工智能不能取代人类的原因是什么

人工智能不能取代人类的原因包括情感与意识、创造力与想象力、伦理与道德、社会交往与沟通能力、灵活性与适应性、持续学习和自我提升等。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

620

2024.09.10

Python 人工智能
Python 人工智能

本专题聚焦 Python 在人工智能与机器学习领域的核心应用,系统讲解数据预处理、特征工程、监督与无监督学习、模型训练与评估、超参数调优等关键知识。通过实战案例(如房价预测、图像分类、文本情感分析),帮助学习者全面掌握 Python 机器学习模型的构建与实战能力。

32

2025.10.21

人工智能在生活中的应用
人工智能在生活中的应用

人工智能在生活中的应用有语音助手、无人驾驶、金融服务、医疗诊断、智能家居、智能推荐、自然语言处理和游戏设计等。本专题为大家提供人工智能相关的文章、下载、课程内容,供大家免费下载体验。

401

2023.08.17

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

7

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
Git 教程
Git 教程

共21课时 | 2.3万人学习

Git版本控制工具
Git版本控制工具

共8课时 | 1.5万人学习

Git中文开发手册
Git中文开发手册

共0课时 | 0人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号