0

0

使用Pandas高效重构Excel宽表数据

DDD

DDD

发布时间:2025-07-08 19:02:02

|

217人浏览过

|

来源于php中文网

原创

使用pandas高效重构excel宽表数据

本文详细介绍了如何利用Pandas库中的pd.lreshape函数,将具有重复模式列(如id_mXX和mprice对)的宽格式Excel表格数据,高效转换为更易于分析的长格式。教程涵盖了数据加载、lreshape参数配置及代码示例,旨在提供一种专业且简洁的数据重构方案,避免传统melt函数可能带来的复杂性和空值问题。

1. 数据重构需求概述

在数据分析工作中,我们经常会遇到以“宽”格式存储的数据,其中包含大量重复模式的列组。例如,一个Excel表格可能包含多对id和mprice列,如id_m00、mprice、id_m01、mprice,依此类推。这种结构虽然在某些情况下便于数据录入,但在进行数据分析或构建模型时,通常需要将其转换为“长”格式,即每行代表一个独立的观测值,且相关的id和mprice数据分别位于单独的列中。

原始数据示例:

Date id_m00 mprice id_m01 mprice
01.01.2023 aa-bb-cc 12,05 dd-ee-fr 8,80
02.01.2023 aa-dd-ee 09,55 ff-gg-gg 7,50

目标数据结构:

Date id mprice
01.01.2023 aa-bb-cc 12,05
02.01.2023 aa-dd-ee 09,55
01.01.2023 dd-ee-fr 8,80
02.01.2023 ff-gg-gg 7,50

对于这种特定的重构需求,传统的pd.melt函数可能不够直接,容易产生额外的中间列或大量的空值,需要后续进行复杂的清理。而pd.lreshape函数则为此类场景提供了更为优雅和高效的解决方案。

2. 使用 pd.lreshape 进行数据重构

pd.lreshape函数专门用于处理具有固定模式列组的宽表数据。它的核心思想是指定一组“stubnames”(存根名称)以及这些存根名称对应的所有列,然后将它们堆叠起来。

Motiff
Motiff

Motiff是由猿辅导旗下的一款界面设计工具,定位为“AI时代设计工具”

下载

2.1 核心概念

pd.lreshape的语法如下: pandas.lreshape(data, column_groups, dropna=False)

  • data: 要进行重塑的DataFrame。
  • column_groups: 一个字典,键是新的列名(即重塑后的列名),值是一个列表,包含原始DataFrame中属于该新列名的所有列名。这些列表中的列名必须按照它们在原始DataFrame中的逻辑顺序排列,以确保正确配对。

2.2 实现步骤与代码示例

假设我们已经将Excel数据加载到一个名为df的Pandas DataFrame中。

import pandas as pd

# 模拟加载原始Excel数据
# 在实际应用中,您会使用 pd.read_excel("您的文件路径.xlsx")
data = {
    'Date': ['01.01.2023', '02.01.2023'],
    'id_m00': ['aa-bb-cc', 'aa-dd-ee'],
    'mprice': ['12,05', '09,55'],
    'id_m01': ['dd-ee-fr', 'ff-gg-gg'],
    'mprice.1': ['8,80', '7,50'] # 注意:Pandas在加载重复列名时会自动添加后缀,如 mprice.1
}
df = pd.DataFrame(data)

print("原始DataFrame:")
print(df)
print("-" * 30)

# 定义要重塑的列组
# 使用 df.filter(like="...") 可以方便地选择所有匹配模式的列
# 对于 'id' 列组,我们选择所有包含 'id_m' 的列
id_columns = df.filter(like="id_m").columns.tolist()
# 对于 'mprice' 列组,我们选择所有包含 'price' 的列
# 注意这里我们使用了 'price' 而不是 'mprice',因为加载后可能有 'mprice.1' 等
mprice_columns = df.filter(like="price").columns.tolist()

# 使用 lreshape 进行重塑
# column_groups 字典的键是重塑后的列名,值是原始DataFrame中对应的列名列表
out = pd.lreshape(
    df,
    {"id": id_columns, "mprice": mprice_columns}
)

# 格式化 mprice 列,将逗号替换为小数点并转换为数值类型
out['mprice'] = out['mprice'].str.replace(',', '.').astype(float)

print("\n重塑后的DataFrame:")
print(out)

代码解释:

  1. 数据加载模拟: pd.DataFrame(data) 模拟了从Excel文件加载数据后的DataFrame结构。特别注意,当Excel中存在同名列(如多个mprice)时,Pandas在加载时会自动为后续的同名列添加.1, .2等后缀,例如mprice.1。这是lreshape能够正确识别并配对的关键。
  2. 识别列组:
    • df.filter(like="id_m").columns.tolist() 会返回所有列名中包含“id_m”的列,例如['id_m00', 'id_m01']。
    • df.filter(like="price").columns.tolist() 会返回所有列名中包含“price”的列,例如['mprice', 'mprice.1']。 这些列表将作为lreshape中column_groups字典的值。
  3. 执行 lreshape:
    • {"id": id_columns, "mprice": mprice_columns} 定义了重塑的规则。它告诉lreshape,将id_columns列表中的所有列(按顺序)合并到新的id列下,同时将mprice_columns列表中的所有列(按顺序)合并到新的mprice列下。由于列名列表是按原始顺序提供的,lreshape能够智能地将id_m00与第一个mprice配对,id_m01与mprice.1配对,以此类推。
  4. 数据类型转换: 原始数据中的mprice可能包含逗号作为小数分隔符,并且是字符串类型。out['mprice'].str.replace(',', '.').astype(float) 将其转换为标准的浮点数类型,以便后续的数值计算。

3. 注意事项与总结

  • 列名规范性: pd.lreshape非常依赖于原始列名的模式。确保您的宽表数据中的列名遵循可识别的模式(例如,id_mXX和mprice)。
  • Pandas加载Excel的列名处理: 当Excel文件中存在重复的列名时,pd.read_excel会自动为后续的重复列名添加数字后缀(如mprice, mprice.1, mprice.2)。lreshape正是利用了这种机制来正确匹配对应的列。因此,在构建column_groups时,使用df.filter(like="...")这种模式匹配的方式来获取所有相关列,比手动列出所有列名更为健壮和方便。
  • 与 melt 的区别 尽管melt也能用于宽到长的转换,但对于这种具有固定配对模式的列(如id和value总是成对出现),lreshape提供了更直接、更少中间步骤的解决方案,避免了melt可能产生的额外variable列和需要后续透视才能恢复原始配对的复杂性。
  • 性能: 对于大型数据集,lreshape通常表现出良好的性能,因为它针对这种特定类型的重塑进行了优化。

通过掌握pd.lreshape,数据分析师和工程师可以高效地处理复杂的宽表数据重构任务,将数据转换为更利于分析和建模的“长”格式,从而提升数据处理的效率和准确性。

相关专题

更多
Python 时间序列分析与预测
Python 时间序列分析与预测

本专题专注讲解 Python 在时间序列数据处理与预测建模中的实战技巧,涵盖时间索引处理、周期性与趋势分解、平稳性检测、ARIMA/SARIMA 模型构建、预测误差评估,以及基于实际业务场景的时间序列项目实操,帮助学习者掌握从数据预处理到模型预测的完整时序分析能力。

49

2025.12.04

数据类型有哪几种
数据类型有哪几种

数据类型有整型、浮点型、字符型、字符串型、布尔型、数组、结构体和枚举等。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

298

2023.10.31

php数据类型
php数据类型

本专题整合了php数据类型相关内容,阅读专题下面的文章了解更多详细内容。

216

2025.10.31

css中float用法
css中float用法

css中float属性允许元素脱离文档流并沿其父元素边缘排列,用于创建并排列、对齐文本图像、浮动菜单边栏和重叠元素。想了解更多float的相关内容,可以阅读本专题下面的文章。

554

2024.04.28

C++中int、float和double的区别
C++中int、float和double的区别

本专题整合了c++中int和double的区别,阅读专题下面的文章了解更多详细内容。

95

2025.10.23

js 字符串转数组
js 字符串转数组

js字符串转数组的方法:1、使用“split()”方法;2、使用“Array.from()”方法;3、使用for循环遍历;4、使用“Array.split()”方法。本专题为大家提供js字符串转数组的相关的文章、下载、课程内容,供大家免费下载体验。

251

2023.08.03

js截取字符串的方法
js截取字符串的方法

js截取字符串的方法有substring()方法、substr()方法、slice()方法、split()方法和slice()方法。本专题为大家提供字符串相关的文章、下载、课程内容,供大家免费下载体验。

206

2023.09.04

java基础知识汇总
java基础知识汇总

java基础知识有Java的历史和特点、Java的开发环境、Java的基本数据类型、变量和常量、运算符和表达式、控制语句、数组和字符串等等知识点。想要知道更多关于java基础知识的朋友,请阅读本专题下面的的有关文章,欢迎大家来php中文网学习。

1437

2023.10.24

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

177

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
PHP新手语法线上课程教学
PHP新手语法线上课程教学

共13课时 | 0.8万人学习

光速学会docker容器
光速学会docker容器

共33课时 | 1.8万人学习

时间管理,自律给我自由
时间管理,自律给我自由

共5课时 | 0.8万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号