0

0

Pandas CSV 字段分隔逻辑:深入解析与正确处理

心靈之曲

心靈之曲

发布时间:2025-07-08 18:08:13

|

238人浏览过

|

来源于php中文网

原创

pandas csv 字段分隔逻辑:深入解析与正确处理

本文旨在深入剖析 Pandas 在读取 CSV 文件时,默认分隔符为逗号,且包含引号时的字段分隔逻辑。通过分析一个实际案例,解释了 doublequote 参数的作用,并提供了避免错误分隔的正确方法,帮助读者更好地理解和运用 Pandas 处理 CSV 数据。

Pandas 库的 read_csv 函数是数据分析中常用的工具,用于将 CSV 文件读取为 DataFrame 对象。然而,在处理包含特殊字符(如引号)的 CSV 文件时,可能会遇到一些意想不到的分隔问题。本文将通过一个具体的例子,深入探讨 Pandas 的字段分隔逻辑,并提供正确的解决方案。

问题分析

考虑以下 CSV 文件 mycsv.csv 的内容:

"1,6 Engine DCT 18\"","1,6 Engine Luxury DCT"

如果使用默认参数调用 pandas.read_csv 函数:

import pandas as pd

df = pd.read_csv("mycsv.csv", header=None, sep=",")
print(df)

会得到以下结果:

                     0                      1
0  1,6 Engine DCT 18\",1  6 Engine Luxury DCT"

可以看到,字段分隔并非如预期那样,"1,6 Engine DCT 18\"" 被错误地分割成了 1,6 Engine DCT 18\",1 和 6 Engine Luxury DCT"。这是因为 Pandas 默认情况下会将 "" 解释为转义字符。

doublequote 参数的作用

Pandas 的 read_csv 函数提供了一个 doublequote 参数,用于控制如何处理字段内部的引号。默认情况下,doublequote=True,这意味着 Pandas 会将 "" 解释为转义字符,从而导致上述错误分隔。

叮当好记-AI音视频转图文
叮当好记-AI音视频转图文

AI音视频转录与总结,内容学习效率 x10!

下载

解决方案

要解决这个问题,需要将 doublequote 参数设置为 False,禁用 Pandas 的默认转义行为:

import pandas as pd

df = pd.read_csv("mycsv.csv", header=None, sep=",", doublequote=False)
print(df)

此时,输出结果将是正确的:

                     0                      1
0  1,6 Engine DCT 18\"  1,6 Engine Luxury DCT

代码示例

以下是一个完整的示例代码,演示了如何正确读取包含引号的 CSV 文件:

import pandas as pd

# 创建包含引号的 CSV 文件
with open("mycsv.csv", "w") as f:
    f.write('"1,6 Engine DCT 18\\"","1,6 Engine Luxury DCT"')

# 使用 doublequote=False 正确读取 CSV 文件
df = pd.read_csv("mycsv.csv", header=None, sep=",", doublequote=False)
print(df)

# 输出:
#                      0                      1
# 0  1,6 Engine DCT 18\"  1,6 Engine Luxury DCT

总结与注意事项

  • 当 CSV 文件包含引号,且引号内部包含分隔符时,需要特别注意 doublequote 参数。
  • 默认情况下,doublequote=True,Pandas 会将 "" 解释为转义字符。
  • 如果需要禁用转义行为,应将 doublequote 设置为 False。
  • 在处理复杂的 CSV 文件时,建议仔细阅读 Pandas 的 read_csv 函数文档,了解各个参数的作用,以便正确读取数据。

理解 Pandas 的字段分隔逻辑,特别是 doublequote 参数的作用,可以帮助我们避免在读取 CSV 文件时遇到的各种问题,从而更有效地进行数据分析。

相关专题

更多
Python 时间序列分析与预测
Python 时间序列分析与预测

本专题专注讲解 Python 在时间序列数据处理与预测建模中的实战技巧,涵盖时间索引处理、周期性与趋势分解、平稳性检测、ARIMA/SARIMA 模型构建、预测误差评估,以及基于实际业务场景的时间序列项目实操,帮助学习者掌握从数据预处理到模型预测的完整时序分析能力。

50

2025.12.04

数据分析的方法
数据分析的方法

数据分析的方法有:对比分析法,分组分析法,预测分析法,漏斗分析法,AB测试分析法,象限分析法,公式拆解法,可行域分析法,二八分析法,假设性分析法。php中文网为大家带来了数据分析的相关知识、以及相关文章等内容。

456

2023.07.04

数据分析方法有哪几种
数据分析方法有哪几种

数据分析方法有:1、描述性统计分析;2、探索性数据分析;3、假设检验;4、回归分析;5、聚类分析。本专题为大家提供数据分析方法的相关的文章、下载、课程内容,供大家免费下载体验。

272

2023.08.07

网站建设功能有哪些
网站建设功能有哪些

网站建设功能包括信息发布、内容管理、用户管理、搜索引擎优化、网站安全、数据分析、网站推广、响应式设计、社交媒体整合和电子商务等功能。这些功能可以帮助网站管理员创建一个具有吸引力、可用性和商业价值的网站,实现网站的目标。

719

2023.10.16

数据分析网站推荐
数据分析网站推荐

数据分析网站推荐:1、商业数据分析论坛;2、人大经济论坛-计量经济学与统计区;3、中国统计论坛;4、数据挖掘学习交流论坛;5、数据分析论坛;6、网站数据分析;7、数据分析;8、数据挖掘研究院;9、S-PLUS、R统计论坛。想了解更多数据分析的相关内容,可以阅读本专题下面的文章。

499

2024.03.13

Python 数据分析处理
Python 数据分析处理

本专题聚焦 Python 在数据分析领域的应用,系统讲解 Pandas、NumPy 的数据清洗、处理、分析与统计方法,并结合数据可视化、销售分析、科研数据处理等实战案例,帮助学员掌握使用 Python 高效进行数据分析与决策支持的核心技能。

71

2025.09.08

Python 数据分析与可视化
Python 数据分析与可视化

本专题聚焦 Python 在数据分析与可视化领域的核心应用,系统讲解数据清洗、数据统计、Pandas 数据操作、NumPy 数组处理、Matplotlib 与 Seaborn 可视化技巧等内容。通过实战案例(如销售数据分析、用户行为可视化、趋势图与热力图绘制),帮助学习者掌握 从原始数据到可视化报告的完整分析能力。

55

2025.10.14

php代码编辑器入口汇总
php代码编辑器入口汇总

本文整理了主流PHP代码编辑器的官网入口及在线使用链接,阅读专题下面的文章了解更多详细内容。

26

2026.01.04

php代码编辑器地址汇总
php代码编辑器地址汇总

本文整理了主流PHP代码编辑器的官网入口及在线使用链接,阅读专题下面的文章了解更多详细内容。

0

2026.01.04

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
React 教程
React 教程

共58课时 | 3.3万人学习

Pandas 教程
Pandas 教程

共15课时 | 0.9万人学习

ASP 教程
ASP 教程

共34课时 | 3.2万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号