0

0

使用 Keras 中的 to_categorical 函数时出现 ModuleNotFoundError 的解决方案

花韻仙語

花韻仙語

发布时间:2025-07-07 19:42:01

|

231人浏览过

|

来源于php中文网

原创

使用 keras 中的 to_categorical 函数时出现 modulenotfounderror 的解决方案

本文旨在解决在使用 Keras 框架时,由于 keras.utils.np_utils 模块的 to_categorical 函数引发的 ModuleNotFoundError 错误。文章将详细介绍该错误的产生原因,并提供清晰、简洁的解决方案,帮助开发者顺利完成 Keras 项目的开发和部署。

在使用 Keras 进行深度学习模型开发时,to_categorical 函数常用于将类别标签转换为 one-hot 编码。然而,在较新版本的 Keras 中,该函数的位置发生了变化,导致直接从 keras.utils.np_utils 导入时会引发 ModuleNotFoundError 错误。

问题原因

该错误是由于 Keras 库的组织结构发生了变化。在早期的 Keras 版本中,to_categorical 函数位于 keras.utils.np_utils 模块下。但在更新的版本中,该函数被移动到了 keras.utils 模块下。

解决方案

要解决这个问题,只需更改导入语句即可。将以下代码:

from keras.utils.np_utils import to_categorical

替换为:

php商城系统
php商城系统

PHP商城系统是国内功能优秀的网上商城系统,同时也是一个商业的PHP开发框架,有多套免费模版,强大的后台管理功能,专业的网上商城系统解决方案,快速建设网上购物商城、数码商城、手机商城、办公用品商城等网站。 php商城系统v3.0 rc6升级 1、主要修复用户使用中出现的js未加载完报错问题,后台整改、以及后台栏目的全新部署、更利于用户体验。 2、扩展出,更多系统内部的功能,以便用户能够迅速找到需

下载
from keras.utils import to_categorical

示例

假设你原来的代码如下:

import numpy as np
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.optimizers import RMSprop
from keras.utils.np_utils import to_categorical # 错误的导入方式

# 加载 MNIST 数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# 预处理数据
x_train = x_train.reshape(60000, 784).astype('float32') / 255
x_test = x_test.reshape(10000, 784).astype('float32') / 255

y_train = to_categorical(y_train, num_classes=10)
y_test = to_categorical(y_test, num_classes=10)

# 构建模型
model = Sequential()
model.add(Dense(512, activation='relu', input_shape=(784,)))
model.add(Dropout(0.2))
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(10, activation='softmax'))

# 编译模型
model.compile(loss='categorical_crossentropy',
              optimizer=RMSprop(),
              metrics=['accuracy'])

# 训练模型
history = model.fit(x_train, y_train,
                    batch_size=128,
                    epochs=10,
                    verbose=1,
                    validation_data=(x_test, y_test))

# 评估模型
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

将 from keras.utils.np_utils import to_categorical 替换为 from keras.utils import to_categorical 后,代码应如下所示:

import numpy as np
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.optimizers import RMSprop
from keras.utils import to_categorical # 正确的导入方式

# 加载 MNIST 数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# 预处理数据
x_train = x_train.reshape(60000, 784).astype('float32') / 255
x_test = x_test.reshape(10000, 784).astype('float32') / 255

y_train = to_categorical(y_train, num_classes=10)
y_test = to_categorical(y_test, num_classes=10)

# 构建模型
model = Sequential()
model.add(Dense(512, activation='relu', input_shape=(784,)))
model.add(Dropout(0.2))
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(10, activation='softmax'))

# 编译模型
model.compile(loss='categorical_crossentropy',
              optimizer=RMSprop(),
              metrics=['accuracy'])

# 训练模型
history = model.fit(x_train, y_train,
                    batch_size=128,
                    epochs=10,
                    verbose=1,
                    validation_data=(x_test, y_test))

# 评估模型
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

注意事项

  • 确保你的 Keras 版本是最新的。可以使用 pip install --upgrade keras 命令更新 Keras。
  • 在修改导入语句后,务必保存并重新运行你的代码。
  • 如果问题仍然存在,请检查你的 Keras 安装是否正确,并确保所有依赖项都已安装。

总结

通过将 to_categorical 函数的导入路径从 keras.utils.np_utils 更改为 keras.utils,可以轻松解决 ModuleNotFoundError 错误。在进行 Keras 项目开发时,了解库的组织结构变化非常重要,这有助于避免类似的问题。希望本文能够帮助你解决在使用 Keras 中的 to_categorical 函数时遇到的问题。

相关专题

更多
pip安装使用方法
pip安装使用方法

安装步骤:1、确保Python已经正确安装在您的计算机上;2、下载“get-pip.py”脚本;3、按下Win + R键,然后输入cmd并按下Enter键来打开命令行窗口;4、在命令行窗口中,使用cd命令切换到“get-pip.py”所在的目录;5、执行安装命令;6、验证安装结果即可。大家可以访问本专题下的文章,了解pip安装使用方法的更多内容。

331

2023.10.09

更新pip版本
更新pip版本

更新pip版本方法有使用pip自身更新、使用操作系统自带的包管理工具、使用python包管理工具、手动安装最新版本。想了解更多相关的内容,请阅读专题下面的文章。

396

2024.12.20

pip设置清华源
pip设置清华源

设置方法:1、打开终端或命令提示符窗口;2、运行“touch ~/.pip/pip.conf”命令创建一个名为pip的配置文件;3、打开pip.conf文件,然后添加“[global];index-url = https://pypi.tuna.tsinghua.edu.cn/simple”内容,这将把pip的镜像源设置为清华大学的镜像源;4、保存并关闭文件即可。

735

2024.12.23

python升级pip
python升级pip

本专题整合了python升级pip相关教程,阅读下面的文章了解更多详细内容。

337

2025.07.23

苹果官网入口直接访问
苹果官网入口直接访问

苹果官网直接访问入口是https://www.apple.com/cn/,该页面具备0.8秒首屏渲染、HTTP/3与Brotli加速、WebP+AVIF双格式图片、免登录浏览全参数等特性。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

115

2025.12.24

拼豆图纸在线生成器
拼豆图纸在线生成器

拼豆图纸生成器有PixelBeads在线版、BeadGen和“豆图快转”;推荐通过pixelbeads.online或搜索“beadgen free online”直达官网,避开需注册的诱导页面。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

84

2025.12.24

俄罗斯搜索引擎yandex官方入口地址(最新版)
俄罗斯搜索引擎yandex官方入口地址(最新版)

Yandex官方入口网址是https://yandex.com。用户可通过网页端直连或移动端浏览器直接访问,无需登录即可使用搜索、图片、新闻、地图等全部基础功能,并支持多语种检索与静态资源精准筛选。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

553

2025.12.24

JavaScript ES6新特性
JavaScript ES6新特性

ES6是JavaScript的根本性升级,引入let/const实现块级作用域、箭头函数解决this绑定问题、解构赋值与模板字符串简化数据处理、对象简写与模块化提升代码可读性与组织性。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

155

2025.12.24

php框架基础知识汇总
php框架基础知识汇总

php框架是构建web应用程序的架构,提供工具和功能,以简化开发过程。选择合适的框架取决于项目需求和技能水平。实战案例展示了使用laravel构建博客的步骤,包括安装、创建模型、定义路由、编写控制器和呈现视图。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

20

2025.12.24

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
10分钟--Midjourney创作自己的漫画
10分钟--Midjourney创作自己的漫画

共1课时 | 0.1万人学习

Midjourney 关键词系列整合
Midjourney 关键词系列整合

共13课时 | 0.8万人学习

AI绘画教程
AI绘画教程

共2课时 | 0.2万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号