0

0

Python如何实现高效的缓存机制?functools.lru_cache扩展

星夢妙者

星夢妙者

发布时间:2025-06-30 19:27:05

|

868人浏览过

|

来源于php中文网

原创

如何在python中实现高效缓存?1.使用functools.lru_cache装饰器,通过lru算法管理缓存,避免重复计算;2.合理设置maxsize参数,根据函数计算成本、调用频率和内存限制调整大小,并可通过cache_info()监控命中率优化配置;3.处理不可哈希参数时,可转换为元组或使用cachetools库自定义键生成方式;4.多线程环境下需确保线程安全,可通过加锁或使用cachetools的线程安全缓存实现。

Python如何实现高效的缓存机制?functools.lru_cache扩展

Python中实现高效缓存,核心在于记住那些计算成本高昂的结果,下次再需要时直接返回,避免重复计算。functools.lru_cache 是一个非常便捷的工具,它通过 Least Recently Used (LRU) 算法来管理缓存,自动丢弃不常用的结果,保证缓存不会无限增长。

Python如何实现高效的缓存机制?functools.lru_cache扩展

解决方案:

Python如何实现高效的缓存机制?functools.lru_cache扩展

functools.lru_cache 的基本用法非常简单,只需要在你的函数上添加一个装饰器即可。

立即学习Python免费学习笔记(深入)”;

from functools import lru_cache

@lru_cache(maxsize=128)
def fibonacci(n):
    if n < 2:
        return n
    return fibonacci(n-1) + fibonacci(n-2)

print(fibonacci(10)) # 第一次调用,会计算
print(fibonacci(10)) # 第二次调用,直接从缓存读取

maxsize 参数控制缓存的大小。设置为 None 表示缓存无大小限制,但这可能会导致内存溢出,需要谨慎使用。

Python如何实现高效的缓存机制?functools.lru_cache扩展

如何根据实际应用场景调整lru_cache的maxsize?

maxsize 的选择取决于几个关键因素:函数的计算成本、调用频率以及可用内存。如果函数计算量非常大,并且经常被调用,那么较大的 maxsize 可能更有利,因为它能存储更多的结果,减少重复计算。但是,如果 maxsize 过大,可能会占用过多内存,反而影响性能。

一种方法是先用较小的 maxsize 进行测试,然后逐步增加,观察性能提升是否明显。可以使用 Python 的 timeit 模块来测量函数的执行时间,从而评估不同 maxsize 下的性能。

另一种更精细的方法是监控缓存的命中率。lru_cache 装饰器提供了一个 cache_info() 方法,可以返回缓存的状态信息,包括命中次数、未命中次数和缓存大小。

from functools import lru_cache

@lru_cache(maxsize=32)
def my_function(arg):
    # 模拟耗时操作
    result = sum(i*i for i in range(arg))
    return result

for i in range(40):
    my_function(i % 10)

print(my_function.cache_info())

通过分析 cache_info() 的输出,可以判断缓存是否足够大。如果命中率很高,说明缓存利用率高,可以考虑减小 maxsize 以节省内存。如果命中率很低,说明缓存太小,应该增加 maxsize

lru_cache如何处理不可哈希的参数?

lru_cache 的工作原理是使用函数的参数作为键来存储结果。因此,函数的参数必须是可哈希的。如果函数的参数包含不可哈希的对象(例如列表、字典等),lru_cache 会抛出 TypeError

解决这个问题有几种方法。

极品模板多语言企业网站管理系统1.2.2
极品模板多语言企业网站管理系统1.2.2

【极品模板】出品的一款功能强大、安全性高、调用简单、扩展灵活的响应式多语言企业网站管理系统。 产品主要功能如下: 01、支持多语言扩展(独立内容表,可一键复制中文版数据) 02、支持一键修改后台路径; 03、杜绝常见弱口令,内置多种参数过滤、有效防范常见XSS; 04、支持文件分片上传功能,实现大文件轻松上传; 05、支持一键获取微信公众号文章(保存文章的图片到本地服务器); 06、支持一键

下载
  1. 将不可哈希的参数转换为可哈希的参数:例如,可以将列表转换为元组。

    from functools import lru_cache
    
    @lru_cache(maxsize=128)
    def my_function(data):
        # data 必须是可哈希的
        return sum(data)
    
    data = [1, 2, 3]
    result = my_function(tuple(data)) # 将列表转换为元组
    print(result)
  2. 使用 cachetoolscachetools 库提供了更灵活的缓存实现,可以自定义键的生成方式。例如,可以使用 cachetools.LRUCache 类,并提供一个函数来将参数转换为键。

    import cachetools
    
    cache = cachetools.LRUCache(maxsize=128)
    
    def my_function(data):
        key = tuple(data) # 将列表转换为元组作为键
        if key in cache:
            return cache[key]
        else:
            result = sum(data)
            cache[key] = result
            return result
    
    data = [1, 2, 3]
    result = my_function(data)
    print(result)
  3. 自定义缓存实现:如果以上方法都不适用,可以自己实现一个缓存。例如,可以使用字典来存储结果,并使用自定义的键生成方式。

    cache = {}
    
    def my_function(data):
        key = tuple(data) # 将列表转换为元组作为键
        if key in cache:
            return cache[key]
        else:
            result = sum(data)
            cache[key] = result
            return result
    
    data = [1, 2, 3]
    result = my_function(data)
    print(result)

lru_cache在多线程环境下的使用注意事项?

lru_cache 本身并不是线程安全的。如果在多线程环境下使用 lru_cache,可能会出现竞争条件,导致缓存数据不一致或程序崩溃。

为了在多线程环境下安全地使用 lru_cache,需要采取一些同步措施。

  1. 使用锁:可以使用 threading.Lock 来保护缓存的访问。

    import threading
    from functools import lru_cache
    
    lock = threading.Lock()
    
    @lru_cache(maxsize=128)
    def my_function(arg):
        with lock:
            # 模拟耗时操作
            result = sum(i*i for i in range(arg))
            return result

    使用 with lock: 语句可以确保在同一时刻只有一个线程可以访问缓存。

  2. 使用 cachetools 库的线程安全缓存cachetools 库提供了一些线程安全的缓存实现,例如 cachetools.TTLCachecachetools.LRUCache。这些缓存内部使用了锁来保护数据,可以安全地在多线程环境中使用。

    import cachetools
    import threading
    
    cache = cachetools.LRUCache(maxsize=128, lock=threading.Lock())
    
    def my_function(arg):
        key = arg
        try:
            return cache[key]
        except KeyError:
            result = sum(i*i for i in range(arg))
            cache[key] = result
            return result

    在使用 cachetools 的线程安全缓存时,需要显式地创建锁对象,并将其传递给缓存的构造函数。

  3. 避免在缓存函数中进行写操作:尽量避免在被 lru_cache 装饰的函数中修改全局变量或共享状态。如果必须进行写操作,一定要使用锁来保护。

总而言之,在多线程环境下使用 lru_cache 时,务必注意线程安全问题,采取适当的同步措施,以避免数据竞争和程序崩溃。选择 cachetools 提供的线程安全缓存可能是更简单可靠的方案。

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

706

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

624

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

734

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

616

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1234

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

573

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

694

2023.08.11

苹果官网入口直接访问
苹果官网入口直接访问

苹果官网直接访问入口是https://www.apple.com/cn/,该页面具备0.8秒首屏渲染、HTTP/3与Brotli加速、WebP+AVIF双格式图片、免登录浏览全参数等特性。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

10

2025.12.24

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.4万人学习

SciPy 教程
SciPy 教程

共10课时 | 0.9万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号