0

0

Python代码性能如何优化?技巧分享

蓮花仙者

蓮花仙者

发布时间:2025-06-29 19:53:01

|

505人浏览过

|

来源于php中文网

原创

python代码性能优化可通过四个方法提升效率。1.优先使用内置函数和标准库,如sum()和itertools,因其由c实现效率更高;2.减少循环嵌套,采用numpy进行向量化运算批量处理数据,或用列表推导式优化小规模数据操作;3.选择合适的数据结构,如查找用set、频繁插入删除用deque、键值对更新用字典;4.利用functools.lru_cache缓存纯函数结果,避免重复计算,同时注意内存占用。掌握这些技巧可显著提升程序运行速度。

Python代码性能如何优化?技巧分享

Python代码性能优化其实是一个很常见的需求,尤其是当你处理的数据量变大、任务复杂度增加时。虽然Python以开发效率高著称,但它的执行速度相比C或Java这类语言还是慢一些。所以,掌握一些实用的优化技巧,能让你的程序跑得更快。

Python代码性能如何优化?技巧分享

1. 尽量使用内置函数和标准库

Python的内置函数(如map()filter()sum())和标准库(如collectionsitertools)都是用C实现的,运行效率非常高。比起自己写循环或者逻辑,直接调用这些函数通常会更高效。

Python代码性能如何优化?技巧分享

举个例子:你想计算一个列表中所有元素的平方和。

立即学习Python免费学习笔记(深入)”;

# 自己写循环
total = 0
for num in numbers:
    total += num ** 2

# 使用生成器表达式 + sum()
total = sum(num ** 2 for num in numbers)

第二种方式不仅代码更简洁,而且性能更好,因为内部是用C实现的迭代机制。

Python代码性能如何优化?技巧分享

建议:

  • 多查文档,了解常用内置函数和模块的功能。
  • 避免重复造轮子,尤其是一些已经被优化过的功能。

2. 减少循环嵌套,尽量向量化操作

Python的循环本身比较慢,特别是多层嵌套循环,很容易导致性能瓶颈。这时候可以考虑用NumPy等库进行向量化运算,把数据变成数组后批量处理。

比如你要对两个列表中的每个元素相加:

a = [1, 2, 3]
b = [4, 5, 6]

# 普通循环
result = []
for i in range(len(a)):
    result.append(a[i] + b[i])

# 使用NumPy
import numpy as np
a_np = np.array(a)
b_np = np.array(b)
result = a_np + b_np

在数据量大的时候,NumPy的性能优势非常明显。

wordpress图片展示类主题
wordpress图片展示类主题

这是易秀购主题网分享的一款展示为图片类的类的wordpress主题,WP主题熟悉的朋友应该一眼能看出这是瀑布流修改优化而来。主题并且采用了Ajax加载技术,主题代码非常精简,加载速度非常快。这款图片类主题格式化了几个自定义栏目,分别是price(价格)、from(购买自…)、ob-url(单品url)、shop-url(店铺url)和banner(文章详细页面上部的图片,如果

下载

建议:

  • 如果你的项目涉及大量数学运算或数组处理,可以考虑引入NumPy。
  • 对于小规模数据,也可以尝试用列表推导式代替普通循环。

3. 使用合适的数据结构

选择合适的数据结构对性能影响非常大。比如:

  • 查找元素时,setlist快得多(因为底层是哈希表)。
  • 频繁插入删除中间元素时,collections.dequelist更适合。
  • 需要频繁更新键值对时,普通字典已经足够高效。

例如判断一个元素是否存在于集合中:

my_list = list(range(10000))
my_set = set(my_list)

# 判断是否存在某个元素
9999 in my_set   # 快
9999 in my_list  # 慢

建议:

  • 熟悉各种数据结构的特性,按需选择。
  • 对大数据量的操作,提前分析哪种结构最合适。

4. 利用缓存与避免重复计算

有些函数可能被多次调用,输入相同的情况下结果也一样,这种时候可以用functools.lru_cache来缓存结果,避免重复计算。

比如斐波那契数列递归实现:

from functools import lru_cache

@lru_cache(maxsize=None)
def fib(n):
    if n < 2:
        return n
    return fib(n - 1) + fib(n - 2)

这样就能大大减少递归次数,提升性能。

建议:

  • 对纯函数(无副作用、输入输出一一对应)使用缓存特别有效。
  • 注意缓存占用内存的问题,合理设置maxsize

基本上就这些。Python性能优化不一定要一开始就做得很极致,但在关键路径上注意一下写法,往往能带来明显提升。像上面提到的几个点,都是平时容易忽略但又很实用的小技巧。

相关文章

数码产品性能查询
数码产品性能查询

该软件包括了市面上所有手机CPU,手机跑分情况,电脑CPU,电脑产品信息等等,方便需要大家查阅数码产品最新情况,了解产品特性,能够进行对比选择最具性价比的商品。

下载

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

715

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

625

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

739

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1235

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

575

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

699

2023.08.11

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

7

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.6万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.0万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号