0

0

CentOS上如何使用GPU加速PyTorch

畫卷琴夢

畫卷琴夢

发布时间:2025-06-16 00:10:17

|

1066人浏览过

|

来源于php中文网

原创

centos上使用gpu加速pytorch,你需要确保你的系统满足以下条件:

  1. 一台配备NVIDIA GPU的服务器。
  2. NVIDIA GPU驱动程序已正确安装。
  3. CUDA Toolkit已安装。
  4. cuDNN库已安装。
  5. PyTorch已安装,并且是为CUDA版本编译的。

以下是详细步骤:

步骤 1: 安装NVIDIA驱动程序

首先,你需要安装适合你的GPU型号的NVIDIA驱动程序。你可以从NVIDIA官方网站下载最新的驱动程序。

# 添加EPEL仓库
sudo yum install epel-release

# 安装NVIDIA驱动程序
sudo yum install kernel-devel-$(uname -r) kernel-headers-$(uname -r)
sudo yum install nvidia-driver-latest-dkms

# 重启系统
sudo reboot

重启后,你可以使用nvidia-smi命令来验证驱动程序是否正确安装。

nvidia-smi

步骤 2: 安装CUDA Toolkit

访问NVIDIA CUDA Toolkit下载页面,选择适合你的操作系统和GPU型号的版本。对于CentOS,你可以使用以下命令安装CUDA Toolkit:

# 添加CUDA仓库
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo tee /etc/apt/trusted.gpg.d/nvidia.gpg
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/yum.repos.d/nvidia-docker.repo

# 安装CUDA Toolkit
sudo yum install cuda

# 设置环境变量
echo 'export PATH=/usr/local/cuda/bin:$PATH' >> ~/.bashrc
echo 'export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc
source ~/.bashrc

# 验证CUDA安装
nvcc --version

步骤 3: 安装cuDNN库

cuDNN是一个针对深度神经网络的GPU加速库。你需要从NVIDIA官方网站下载cuDNN库,并按照说明进行安装。

步骤 4: 安装PyTorch

你可以使用pip来安装PyTorch。首先,你需要确定你的CUDA版本,然后安装与之兼容的PyTorch版本。你可以在PyTorch官方网站找到相应的安装命令。

Android的Tasker如何使用 中文WORD版 2MB
Android的Tasker如何使用 中文WORD版 2MB

本文档主要讲述的是Android的Tasker如何使用;Android 上的Tasker绝对称得上是Android系统的神器之一,与Auto Memory Manager不同,Tasker不是加速型的软件,而是系统增强型的软件,由于有众多系统状态可控制,故使得Tasker一跃成为Android系统中 最闪亮的明星。但Tasker也无疑是最难使用的软件,由于可以控制的地方太多,反而让人觉得有些无所适从,不知道要从哪开始下手,使得Tasker的普 及很成问题。这篇文章就是从Tasker的功能谈起,结合设置实例

下载

例如,如果你的CUDA版本是11.3,你可以使用以下命令安装PyTorch:

pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113

步骤 5: 验证安装

安装完成后,你可以运行一个简单的PyTorch脚本来验证GPU是否被正确使用。

import torch

# 检查是否有可用的GPU
print(torch.cuda.is_available())

# 获取GPU数量
print(torch.cuda.device_count())

# 获取当前GPU名称
print(torch.cuda.get_device_name(0))

如果上述脚本输出显示了GPU的信息,那么你的PyTorch已经成功配置为使用GPU加速了。

请注意,这些步骤可能会随着软件版本的更新而变化。始终建议查看官方文档以获取最新信息。

相关专题

更多
pip安装使用方法
pip安装使用方法

安装步骤:1、确保Python已经正确安装在您的计算机上;2、下载“get-pip.py”脚本;3、按下Win + R键,然后输入cmd并按下Enter键来打开命令行窗口;4、在命令行窗口中,使用cd命令切换到“get-pip.py”所在的目录;5、执行安装命令;6、验证安装结果即可。大家可以访问本专题下的文章,了解pip安装使用方法的更多内容。

335

2023.10.09

更新pip版本
更新pip版本

更新pip版本方法有使用pip自身更新、使用操作系统自带的包管理工具、使用python包管理工具、手动安装最新版本。想了解更多相关的内容,请阅读专题下面的文章。

405

2024.12.20

pip设置清华源
pip设置清华源

设置方法:1、打开终端或命令提示符窗口;2、运行“touch ~/.pip/pip.conf”命令创建一个名为pip的配置文件;3、打开pip.conf文件,然后添加“[global];index-url = https://pypi.tuna.tsinghua.edu.cn/simple”内容,这将把pip的镜像源设置为清华大学的镜像源;4、保存并关闭文件即可。

749

2024.12.23

python升级pip
python升级pip

本专题整合了python升级pip相关教程,阅读下面的文章了解更多详细内容。

337

2025.07.23

pytorch是干嘛的
pytorch是干嘛的

pytorch是一个基于python的深度学习框架,提供以下主要功能:动态图计算,提供灵活性。强大的张量操作,实现高效处理。自动微分,简化梯度计算。预构建的神经网络模块,简化模型构建。各种优化器,用于性能优化。想了解更多pytorch的相关内容,可以阅读本专题下面的文章。

429

2024.05.29

Python AI机器学习PyTorch教程_Python怎么用PyTorch和TensorFlow做机器学习
Python AI机器学习PyTorch教程_Python怎么用PyTorch和TensorFlow做机器学习

PyTorch 是一种用于构建深度学习模型的功能完备框架,是一种通常用于图像识别和语言处理等应用程序的机器学习。 使用Python 编写,因此对于大多数机器学习开发者而言,学习和使用起来相对简单。 PyTorch 的独特之处在于,它完全支持GPU,并且使用反向模式自动微分技术,因此可以动态修改计算图形。

19

2025.12.22

centos
centos

PHP中文网为大家提供centos相关信息,CentOS(Community Enterprise Operating System,中文意思是社区企业操作系统)是Linux发行版之一,是免费的、开源的、可以重新分发的开源操作系统,PHP中文网提供centos相关文章,以及安装教程。

431

2023.06.16

常见的linux系统有哪些
常见的linux系统有哪些

linux系统有Ubuntu、Fedora、CentOS、Debian、openSUSE、Arch Linux、Gentoo、Slackware、Linux Mint、Kali Linux。更多关于linux系统的文章详情请阅读本专题下面的文章。php中文网欢迎大家前来学习。

800

2023.10.27

c++主流开发框架汇总
c++主流开发框架汇总

本专题整合了c++开发框架推荐,阅读专题下面的文章了解更多详细内容。

80

2026.01.09

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
Git 教程
Git 教程

共21课时 | 2.6万人学习

Git版本控制工具
Git版本控制工具

共8课时 | 1.5万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号