0

0

opencv: 形态学 转换(图示+源码)

星夢妙者

星夢妙者

发布时间:2025-05-21 10:14:31

|

301人浏览过

|

来源于php中文网

原创

概述

OpenCV 中有七种形态学转换操作:腐蚀、膨胀、开运算、闭运算、形态学梯度、礼帽和黑帽。

API参考表

中文名 英文名 API 原理 个人理解
腐蚀 erode erosion = cv2.erode(src=girl_pic, kernel=kernel) 对滑窗中的像素点按位乘,再从中取最小值点作为输出。可以去除浅色噪点 浅色成分被腐蚀
膨胀 dilate dilation = cv2.dilate(src=girl_pic, kernel=kernel) 对滑窗中的像素点按位乘,再从中取最大值点作为输出。可以增加浅色成分 浅色成分得膨胀
开运算 morphology-open opening = cv2.morphologyEx(girl_pic, cv2.MORPH_OPEN, kernel) 先腐蚀,后膨胀,去除白噪点 先合再开,对浅色成分不利
闭运算 morphology-close closing = cv2.morphologyEx(girl_pic, cv2.MORPH_CLOSE, kernel) 先膨胀,后腐蚀,去除黑噪点 先开再合,浅色成分得势
形态学梯度 morphology-grandient gradient = cv2.morphologyEx(girl_pic, cv2.MORPH_GRADIENT, kernel) 一幅图像腐蚀与膨胀的区别,可以得到轮廓 数值上解释为:膨胀减去腐蚀
礼帽 tophat tophat = cv2.morphologyEx(girl_pic, cv2.MORPH_TOPHAT, kernel) 原图像减去开运算的差 数值上解释为:原图像减去开运算
黑帽 blackhat blackhat = cv2.morphologyEx(girl_pic, cv2.MORPH_BLACKHAT, kernel) 闭运算减去原图像的差 数值上解释为:闭运算减去原图像

实验思路:编写代码,实现OpenCV自带的七种形态学转换操作,并将生成的图片保存到 pic 文件夹中;使用礼帽生成的图像加上开运算生成的图像,看看是否能得到原图,并将生成的图片保存到 pic 文件夹中;使用闭运算生成的图像减去黑帽生成的图像,看看是否能得到原图,并将生成的图片保存到 pic 文件夹中;如果成功,则验证自己的思路是正确的。

Demo:原始图像(../pic/girl.jpg):

opencv: 形态学 转换(图示+源码)

七种形态学转换操作:

腐蚀(../pic/erosion.jpg):

opencv: 形态学 转换(图示+源码)

膨胀(../pic/dilation.jpg):

opencv: 形态学 转换(图示+源码)

开运算(../pic/opening.jpg):

opencv: 形态学 转换(图示+源码)

闭运算(../pic/closing.jpg):

opencv: 形态学 转换(图示+源码)

形态学梯度(../pic/gradient.jpg):

opencv: 形态学 转换(图示+源码)

礼帽(../pic/tophat.jpg):

STORYD
STORYD

帮你写出让领导满意的精美文稿

下载

opencv: 形态学 转换(图示+源码)

黑帽(../pic/blackhat.jpg):

opencv: 形态学 转换(图示+源码)

通过转换后的图像得到原图像:

cv2.add(open, tophat)(../pic/open_and_tophat.jpg):

opencv: 形态学 转换(图示+源码)

close-blackhat(../pic/close_subtract_blackhat.jpg):

opencv: 形态学 转换(图示+源码)

附上自己编写的实验代码:

# -*- coding: utf-8 -*-
import cv2
import numpy as np

girl_pic = cv2.imread('../pic/girl.jpg') kernel = np.ones((5, 5), np.uint8)

腐蚀

erosion = cv2.erode(src=girl_pic, kernel=kernel) cv2.imshow('erosion', erosion) cv2.waitKey(2000) cv2.destroyAllWindows() cv2.imwrite('../pic/erosion.jpg', erosion)

膨胀

dilation = cv2.dilate(src=girl_pic, kernel=kernel) cv2.imshow('dilation', dilation) cv2.waitKey(2000) cv2.destroyAllWindows() cv2.imwrite('../pic/dilation.jpg', dilation)

开运算

opening = cv2.morphologyEx(girl_pic, cv2.MORPH_OPEN, kernel) cv2.imshow('opening', opening) cv2.waitKey(2000) cv2.destroyAllWindows() cv2.imwrite('../pic/opening.jpg', opening)

闭运算

closing = cv2.morphologyEx(girl_pic, cv2.MORPH_CLOSE, kernel) cv2.imshow('closing', closing) cv2.waitKey(2000) cv2.destroyAllWindows() cv2.imwrite('../pic/closing.jpg', closing)

形态学梯度

gradient = cv2.morphologyEx(girl_pic, cv2.MORPH_GRADIENT, kernel) cv2.imshow('gradient', gradient) cv2.waitKey(2000) cv2.destroyAllWindows() cv2.imwrite('../pic/gradient.jpg', gradient)

礼帽

tophat = cv2.morphologyEx(girl_pic, cv2.MORPH_TOPHAT, kernel) cv2.imshow('tophat', tophat) cv2.waitKey(2000) cv2.destroyAllWindows() cv2.imwrite('../pic/tophat.jpg', tophat)

黑帽

blackhat = cv2.morphologyEx(girl_pic, cv2.MORPH_BLACKHAT, kernel) cv2.imshow('blackhat', blackhat) cv2.waitKey(2000) cv2.destroyAllWindows() cv2.imwrite('../pic/blackhat.jpg', blackhat)

cv2.add(open, tophat)

open_and_tophat = cv2.add(opening, tophat) cv2.imshow('open_and_tophat', open_and_tophat) cv2.waitKey(2000) cv2.destroyAllWindows() cv2.imwrite('../pic/open_and_tophat.jpg', open_and_tophat)

close-blackhat

close_subtract_blackhat = closing - blackhat cv2.imshow('close_subtract_blackhat', close_subtract_blackhat) cv2.waitKey(2000) cv2.destroyAllWindows() cv2.imwrite('../pic/close_subtract_blackhat.jpg', close_subtract_blackhat)

实际遇到的问题及解决方法:在设计实验时,使用礼帽生成的图像加上开运算生成的图像能够得到原图,但使用黑帽生成的图像加上闭运算生成的图像却无法得到原图,反而得到了一张比闭运算图像更浅色的图片(如下):

opencv: 形态学 转换(图示+源码)

经过思考,发现了问题所在:书上对黑帽的定义是:

但是却没有明确指出被减数和减数分别是谁。根据闭运算和黑帽的定义,我认为应该是:

即可得:

修改代码后进行验证,果然生成了原图像:

opencv: 形态学 转换(图示+源码)

相关专题

更多
php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

7

2025.12.31

php网站源码教程大全
php网站源码教程大全

本专题整合了php网站源码相关教程,阅读专题下面的文章了解更多详细内容。

4

2025.12.31

视频文件格式
视频文件格式

本专题整合了视频文件格式相关内容,阅读专题下面的文章了解更多详细内容。

7

2025.12.31

不受国内限制的浏览器大全
不受国内限制的浏览器大全

想找真正自由、无限制的上网体验?本合集精选2025年最开放、隐私强、访问无阻的浏览器App,涵盖Tor、Brave、Via、X浏览器、Mullvad等高自由度工具。支持自定义搜索引擎、广告拦截、隐身模式及全球网站无障碍访问,部分更具备防追踪、去谷歌化、双内核切换等高级功能。无论日常浏览、隐私保护还是突破地域限制,总有一款适合你!

7

2025.12.31

出现404解决方法大全
出现404解决方法大全

本专题整合了404错误解决方法大全,阅读专题下面的文章了解更多详细内容。

42

2025.12.31

html5怎么播放视频
html5怎么播放视频

想让网页流畅播放视频?本合集详解HTML5视频播放核心方法!涵盖<video>标签基础用法、多格式兼容(MP4/WebM/OGV)、自定义播放控件、响应式适配及常见浏览器兼容问题解决方案。无需插件,纯前端实现高清视频嵌入,助你快速打造现代化网页视频体验。

4

2025.12.31

关闭win10系统自动更新教程大全
关闭win10系统自动更新教程大全

本专题整合了关闭win10系统自动更新教程大全,阅读专题下面的文章了解更多详细内容。

3

2025.12.31

阻止电脑自动安装软件教程
阻止电脑自动安装软件教程

本专题整合了阻止电脑自动安装软件教程,阅读专题下面的文章了解更多详细教程。

3

2025.12.31

html5怎么使用
html5怎么使用

想快速上手HTML5开发?本合集为你整理最实用的HTML5使用指南!涵盖HTML5基础语法、主流框架(如Bootstrap、Vue、React)集成方法,以及无需安装、直接在线编辑运行的平台推荐(如CodePen、JSFiddle)。无论你是新手还是进阶开发者,都能轻松掌握HTML5网页制作、响应式布局与交互功能开发,零配置开启高效前端编程之旅!

2

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
PostgreSQL 教程
PostgreSQL 教程

共48课时 | 6.3万人学习

Excel 教程
Excel 教程

共162课时 | 10.2万人学习

PHP基础入门课程
PHP基础入门课程

共33课时 | 1.9万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号