0

0

使用 CNN VGG 网络检测外汇价格修正(使用 Python)

花韻仙語

花韻仙語

发布时间:2024-10-14 20:07:24

|

1289人浏览过

|

来源于dev.to

转载

使用 cnn vgg 网络检测外汇价格修正(使用 python)

外汇交易是最具活力的金融市场之一,价格不断变化。对于交易者来说,尽早发现价格调整至关重要。 价格调整是指在市场继续其原来的方向之前整体趋势的暂时逆转。 卷积神经网络 (cnn),尤其是 vgg 架构,提供了通过识别外汇数据中的微妙模式来检测这些修正的创新方法。

什么是价格修正?

当价格短暂地与趋势相反时,就会发生价格调整,为交易者创造建立新头寸或调整现有头寸的机会。例如,在看涨趋势中,当价格暂时下跌然后恢复上行轨迹时,就会发生修正。及早发现这些价格调整可以显着影响交易者的策略,从而实现更好的风险管理和及时的决策。

为什么使用 cnn 和 vgg 进行外汇交易?

cnn 已被证明在模式识别方面非常有效,尤其是在图像分类任务中。像外汇这样的金融市场虽然基于数字数据,但可以通过将时间序列数据(例如烛台图)转换为图像来受益于 cnn 的优势。 vgg 网络 由牛津大学视觉几何小组推出,由于其深度和简单性而特别适合。它们由多个卷积层组成,这些层逐渐从输入数据中学习复杂的特征。

在外汇交易中使用 cnn vgg 的优点:

  • 模式识别: cnn 擅长识别图像中的微妙模式和趋势,帮助交易者检测通过传统技术分析可能不易看到的修正。
  • 自动化: cnn 可以自动处理大量外汇数据,从而实现实时分析。
  • 速度:鉴于外汇交易的快节奏本质,vgg 网络可以快速识别潜在的调整,为交易者提供竞争优势。

映射外汇数据以供 cnn 输入

要将 cnn 应用于外汇交易,我们首先需要将时间序列数据转换为模型可以处理的格式——图像。这些图像可以是价格变动的视觉表示,例如烛台图、热图或折线图。

立即学习Python免费学习笔记(深入)”;

以下是我们如何将外汇价格数据转换为烛台图以供 cnn 处理的方法:

import matplotlib.pyplot as plt
import numpy as np

def create_candlestick_image(open_prices, high_prices, low_prices, close_prices, output_file):
    fig, ax = plt.subplots(figsize=(6, 6))  # increased image size for more clarity

    for i in range(len(open_prices)):
        color = 'green' if close_prices[i] > open_prices[i] else 'red'
        ax.plot([i, i], [low_prices[i], high_prices[i]], color='black', linewidth=1.5)
        ax.plot([i, i], [open_prices[i], close_prices[i]], color=color, linewidth=6)

    ax.axis('off')  # hide the axes for better image clarity
    plt.savefig(output_file, bbox_inches='tight', pad_inches=0)
    plt.close()

# example data
open_prices = np.random.rand(20) * 100
high_prices = open_prices + np.random.rand(20) * 10
low_prices = open_prices - np.random.rand(20) * 10
close_prices = open_prices + np.random.rand(20) * 5 - 2.5

# generate candlestick image
create_candlestick_image(open_prices, high_prices, low_prices, close_prices, "candlestick_chart.png")

python 代码生成一个烛台图,可以将其另存为图像以输入 vgg 模型。

为外汇实施 vgg 网络

一旦外汇数据转换为图像,vgg 网络就可以用于检测价格修正。以下是如何实施 vgg16 网络 对外汇价格修正进行分类:

  1. 数据预处理:加载并预处理外汇烛台图像,确保 vgg16 使用正确的图像尺寸 (224x224)。

  2. 特征提取:使用预先训练的 vgg16 模型从外汇数据图像中提取高级特征。

  3. 训练模型:微调模型以预测是否会发生价格修正(买入、卖出、无)。

    Sider
    Sider

    多功能AI浏览器助手,帮助用户进行聊天、写作、阅读、翻译等

    下载

代码如下:

from tensorflow.keras.applications import VGG16
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Dropout
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.optimizers import Adam

# Load VGG16 without the top fully connected layers
vgg_base = VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3))

# Build a new model using VGG as the base
model = Sequential()
model.add(vgg_base)
model.add(Flatten())  # Flatten the 3D outputs to 1D
model.add(Dense(512, activation='relu'))  # Fully connected layer
model.add(Dropout(0.5))  # Regularization to prevent overfitting
model.add(Dense(3, activation='softmax'))  # Output layer for 3 classes: Buy, Sell, None

# Freeze the convolutional base of VGG16
for layer in vgg_base.layers:
    layer.trainable = False

# Compile the model
model.compile(optimizer=Adam(), loss='categorical_crossentropy', metrics=['accuracy'])

# Data augmentation to increase the diversity of the dataset
train_datagen = ImageDataGenerator(rescale=1./255, rotation_range=30, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True)

# Assuming 'train_dir' contains the candlestick images
train_generator = train_datagen.flow_from_directory(
    'train_dir',
    target_size=(224, 224),
    batch_size=32,
    class_mode='categorical')

# Train the model
model.fit(train_generator, epochs=20)

此示例通过利用预训练的 vgg16 模型来使用迁移学习,该模型已经精通特征提取。通过冻结卷积层并添加新的全连接层,可以对模型进行微调以检测特定于外汇数据的价格修正。

克服挑战

虽然 cnn,尤其是 vgg,提供了准确性和速度,但仍需要考虑一些挑战:

  1. 数据表示:外汇数据必须转换为图像,这需要仔细规划以确保图像代表有意义的金融信息。

  2. 过度拟合:如果使用不足或非多样化的数据进行训练,深度学习模型可能会过度拟合。 丢弃数据增强等技术以及确保大型、平衡的数据集至关重要。

  3. 市场噪音:金融数据充满噪音,区分真正的修正和随机波动可能很棘手。这使得使用高质量的标记数据训练 cnn 变得至关重要。

结论

cnn vgg 架构提供了强大的工具来检测外汇价格修正,通过自动模式识别为交易者提供优势。通过将时间序列数据转换为视觉格式,cnn 可以提取和分析传统方法可能遗漏的复杂模式。尽管挑战依然存在,但使用 vgg 进行外汇交易的好处——速度、自动化和准确性——使其成为一种有前途的方法。

随着深度学习和金融技术的快速发展,我们可以期待在不久的将来会有更多创新的应用。

参考

使用 cnn vgg 检测外汇价格修正

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

745

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

634

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

757

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1259

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

577

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

705

2023.08.11

c++主流开发框架汇总
c++主流开发框架汇总

本专题整合了c++开发框架推荐,阅读专题下面的文章了解更多详细内容。

25

2026.01.09

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.9万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.1万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号